PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Comparison of surface morphology and structure of Al2O3 thin films deposited by sol-gel and ALD methods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this research was examination Al2O3 thin film obtained with two different method, by sol-gel and ALD, and comparison the surface morphology and structure of deposited thin films. The films deposited on the monocrystalline silicon were tested for their suitability for use in silicon solar cells. Design/methodology/approach: Trimethylaluminum (TMA) was used as a precursor of Al2O3 which is reacted with water enabled the deposition of thin films by ALD method. By the sol-gel method the aluminium tri-sec butoxide (TBA) was used as a precursor to obtain Al2O3 thin films. The aluminium oxide solutions prepared by sol-gel method were deposited by spin coating technique. Examination of the structure and morphology of the surface of the Al2O3 thin films deposited by sol gel and ALD method were performed using atomic force microscope and transmission electron microscope. For the analysis of surface topography deposited thin films atomic force microscope XE-100 from Park Systems was used. Qualitative analysis of the chemical composition was carried out using an energy dispersion spectrometer (EDS). The detailed structural studies were conducted using a Titan 80-300 scanning-transmission electron microscope S/TEM from the FEI Company. Detailed research on the structure of the deposited Al2O3 thin films were performed. The HRTEM images and diffraction SAED were recorded. Findings: The small atoms clusters of a width less than 20 nm were documented. The thin film deposited by spin-coating technique on silicon substrate with 3000 rpm is characterized by RMS and Ra values of, respectively, 0.26 and 0.2 nm. RMS was defined as rough mean square parameter and Ra was defined as the arithmetic mean deviation of the profile from the mean line. An analysis of the frequency histograms of irregularities of the thin film obtained by the spin coating on a silicon substrate at 3000 rpm shows that a large part of them does not exceed 0.5 nm, and the single irregularities reach up to 2.2 nm. When comparing the AFM pictures with the thin films deposited by ALD technique and spin-coating it has been found that the thin films obtained on polished silicon substrates are similar in morphology. The EDS spectra shows the characteristic for oxygen (0.525 keV) and aluminum (1.486 keV) reflections derived from the thin film. In Al2O3 thin film obtained by ALD method the occurrence of α phase of aluminum oxide with a hexagonal structure was identified, just like in the case of thin film deposited by sol-gel. Practical implications: Known aluminium oxide properties and the possibility of obtaining a uniform thin layer show that it can be good material for different application. Precise description of the properties of Al2O3 is very important, since this material is one of the most frequently used in catalyst industry, in medicine, electronics and photovoltaics, as well as a protective layer. The Al2O3 thin film can act as passive and anti-reflective layer simultaneously in silicon solar cell. Using this thin film can simplify the technology of manufacturing silicon solar cells Originality/value: The paper presents researches of aluminium oxide thin films deposited by sol-gel and atomic layer deposition method on monocrystalline silicon.
Rocznik
Strony
49--57
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS, ul. Sobieskiego 12/1, 44-100 Gliwice, Poland
Bibliografia
  • [1] A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, Atomic Layer Deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings, Applied Optics 48/9 (2009) 1727-1732, doi: 10.1364/ AO.48.001727.
  • [2] L.A. Dobrzański, M. Szindler, Al2O3 antireflection coatings for silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 59/1 (2013) 13-19.
  • [3] J. Zhao, M.A. Green, Optimized antireflection coatings for high efficiency silicon solar cells, IEEE Transactions on Electron Devices 38/8 (1991) 19251934, doi: 10.1109/16.119035.
  • [4] B. Brennan, H. Dong, D. Zhernokletov, J. Kim, R.M. Wallace, Surface and interfacial reaction study of half cycle atomic layer deposited Al2O3 on chemically treated InP surfaces, Applied Physics Express 4 (2011) 125701.
  • [5] M. Leskelä, M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures, Thin Solid Films 409 (2002) 138-146, doi: 10.1016/S00406090(02)00117-7.
  • [6] H. Kim, H.B.R. Lee, W.J. Maeng, Applications of atomic layer deposition to nanofabrication and emerging nanodevices, Thin Solid Films 517 (2009) 2563-2580, https://doi.org/10.1016/j.tsf. 2008.09.007.
  • [7] L.A. Dobrzański, A. Dobrzańska-Danikiewicz, Engineering materials surface treatment, Open Access Library 5 (2011) 1-480 (in Polish).
  • [8] P. Violet, E. Blanquet, D. Monnier, I. Nuta, C. Chatillon, Experimental thermodynamics for the evaluation of ALD growth processes, Surface and Coatings Technology 204/6-7 (2009) 882-886, doi.: 10.1016/j.surfcoat.2009.08.022.
  • [9] H. Tiznado, M. Bouman, B-C. Kang, I. Lee, F. Zaera, Mechanistic details of atomic layer deposition (ALD) processes for metal nitride film growth, Journal of Molecular Catalysis A: Chemical 281 (2008) 35-43, https://doi.org/10.1016/j.molcata.2007.06.010.
  • [10] J. Dendooven, Atomically-Precise Methods for Synthesis of Solid Catalysts, Royal Society of Chemistry, 2015, 167-197, doi:10.1039/ 9781782628439-00167.
  • [11] H. Van Bui, F. Grillo, J.R. van Ommen, Atomic and molecular layer deposition: off the beaten track, Chemical Communications 53 (2017) 45-71, doi: 10.1039/C6CC05568K.
  • [12] J.R. Bakke, K.L. Pickrahn, T.P. Brennan, S.F. Bent, Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition, Nanoscale 3 (2011) 3482-3508, doi: 10.1039/C1NR10349K.
  • [13] M. Rital, J. Niinistö, Chemical Vapour Deposition: Precursors, Processes and Applications, Royal Society of Chemistry, 2009, 158-206, doi: 10.1039/ 9781847558794-00158.
  • [14] X. Meng, X. Wang, D. Geng, C. Ozgit-Akgun, N. Schneider, J.W. Elam, Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology, Materials Horizons 4 (2017) 133-154, doi: 10.1039/C6MH00521G.
  • [15] A.F. Palmstrom, P.K. Santra, S.F. Bent, Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties, Nanoscale 7 (2015) 12266-12283, doi: 10.1039/ C5NR02080H.
  • [16] J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition, Chemical Science 6 (2015) 6705-6716, doi: 10.1039/C5SC01941A
  • [17] L.A. Dobrzański, M. Szindler, Sol-gel and ALD antireflection coatings for silicon solar cells, Electronics 53/8 (2012) 125-127.
  • [18] K. Lukaszkowicz, Forming the structure and properties of hybrid coatings on reversible rotating extrusion dies, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 159-224.
  • [19] A.D. Dobrzańska-Danikiewicz, A. Drygała, Strategic development perspectives of laser processing on polycrystalline silicon surface, Archives of Materials Science and Engineering 44/2 (2010) 96-103.
  • [20] K Lukaszkowicz, Coatings for transport industry, Transport Problems 9/3 (2014) 15-20.
  • [21] L.A. Dobrzański, A. Drygała, Laser processing of silicon surface, Material Engineering 34/6 (2013) 661664 (in Polish).
  • [22] K. Lukaszkowicz, J. Wiśniewska, A. Paradecka, P. Borylo, Characteristics of hybrid coating deposited by PVD and PACVD process, Advanced Materials Research 1036 (2014) 225-229, doi: 10.4028/www. scientific.net/AMR.1036.225.
  • [23] N. Sriharan, N. Muthukumarasamy, T.S. Senthil, Preparation and Characterization of Al2O3 Doped TiO2 Nanocomposites Prepared from Simple Sol-Gel Method, International Journal of Research in Physical Chemistry & Chemical Physics 230/12 (2016) 17451758, doi: https://doi.org/10.1515/zpch-2016-0774.
  • [24] M. Sulaiman, A.A. Rahman, M.S. Mohamed, Sol-gel synthesis and characterization of Li2CO3-Al2O3 composite solid electrolytes, Ionics 22/3 (2016) 327332, https://doi.org/10.1007/s11581-015-1548-2.
  • [25] Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Nanomaterials for energy conversion and storage, Chemical Society Reviews 42 (2013) 3127-3171, doi: 10.1039/C3CS00009E.
  • [26] C. Battaglia, A. Cuevas, S. De Wolf, High-efficiency crystalline silicon solar cells: status and perspectives, Journal Article Energy and Environmental Science 9 (2016) 1552-1576, doi: 10.1039/C5EE03380B.
  • [27] K.C. Camargo, A.F. Michels, F.S. Rodembusch, F. Horowitz, Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the nearinfrared region, Chemical Communications 48 (2012) 4992-4994, doi: 10.1039/C2CC30456B.
  • [28] S.B. Khan, H. Wu, Z. Fei, S. Ning, Z. Zhang, Antireflective coatings with enhanced adhesion strength, Nanoscale (2017), doi: 10.1039/ C7NR02334K.
  • [29] N. Balai, C. Park, J. Raja, M. Ju, Low surface recombination velocity on P-Type Cz-Si surface by sol-gel deposition of Al2O3 films for solar cell applications, Journal Of Nanoscience And Nanotechnology 15/7 (2015) 5123-5128, doi: 10.1166/jnn.2015.9851.
  • [30] A.M. Albadri, Characterization of Al2O3 surface passivation of silicon solar cells, Thin Solid Films 562 (2014) 451-455, https://doi.org/10.1016/ j.tsf.2014.03.071.
  • [31] B.F. Dou, R. Jia, Y. Sun, H.F. Li, C. Chen, Surface passivation of nano-textured silicon solar cells by atomic layer deposited Al2O3 films, Journal of Applied Physics 114/17 (2013) 174301, http://dx.doi.org/10.1063/1.4828732.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-254d2ffa-5150-420f-aedf-1fc8c32becde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.