Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a different, than commonly used, form of equations describing the filtration of a viscous compressible fluid through a porous medium in isothermal conditions. This mathematical model is compared with the liquid flow equations used in the theory of consolidation. It is shown that the current commonly used filtration model representation significantly differs from the filtration process representation in Biot’s and Terzaghi’s soil consolidation models, which has a bearing on the use of the methods of determining the filtration coefficient on the basis of oedometer test results. The present analysis of the filtration theory equations should help interpret effective parameters of the non-steady filtration model. Moreover, equations for the flow of a gas through a porous medium and an interpretation of the filtration model effective parameters in this case are presented.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
105--114
Opis fizyczny
Bibliogr. 27 poz. rys.
Twórcy
autor
- Wrocław University of Technology, Institute of Geotechnics and Hydrotechnics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- KGHM CUPRUM, Ltd. Research and Development Centre, ul. Gen. Wł. Sikorskiego 2-8, 53-659 Wrocław, Poland
Bibliografia
- [1] AURIAULT J.L., Dynamic Behaviour of a Porous Medium Saturated by a Newtonian Fluid, Int. J. Engng. Sc., 1980, Vol. 18.
- [2] AURIAULT J.L., STRZELECKI T., On the Electro-Osmotic Flow in a Saturated Porous Medium, Int. J. Engng. Sc., 1981, Vol. 19.
- [3] AURIAULT J.L., STRZELECKI T., BAUER J., HE S., Porous Deformable Media Saturated by a Very Compressible Fluid, Eur. J. Mech. A/Solid, 1990, Vol. 9, 4.
- [4] BARTLEWSKA M., Defining parameters of effective rheological models of cohesive soils, doctoral dissertation, Wrocław University of Technology, Faculty of Geoengineering, Mining and Geology, Wrocław, 2009, (in Polish).
- [5] BARTLEWSKA M., STRZELECKI T., Equations of Biot’s consolidation with Kelvin–Voight rheological frame, Studia Geotechnica et Mechanica, 2009, Vol. XXXI, No. 2.
- [6] BARTLEWSKA M., STRZELECKI T., One-dimensional consolidation of the porous medium with the Rheological Kelvin– Voight skeleton, Studia Geotechnica et Mechanica, 2008, Vol. XXX.
- [7] BENSOUSSAN A., LIONS J.L., PAPANICOLAOU G., Asymptotic Analysis for Periodic Structures, Holland Publishing Company, Amsterdam, 1978.
- [8] BIOT M.A., General Theory of three-dimensional Consolidation, J. Appl. Physics, 1941, Vol. 12.
- [9] BIOT M.A., Theory of Propagation of Elastic Waves in a Fluid-Saturated porous Solid, I Law-Frequency Range, J.A.S.A, 1956, 28, 2.
- [10] COUSSY O., Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept, Int. J. Numer. Anal. Meth. Geomech., 2007, 31.
- [11] COUSSY O., Mechanics and Physics of Porous Solids, JohnWiley, 2010.
- [12] DARCY H., Les fontaines publiques de la ville de Dijon, Paris, 1856.
- [13] DETOURNAY E., CHENG A.H.-D., Fundamentals of Poroelasticity, Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Methods, Pergamon Press, Oxford 1993.
- [14] DUPUIT J., Etudes theoriques et practiquessur le movement des eaux dans les canauxdecouvert et a travers les terrains permeable, Paris, 1863.
- [15] FORCHEHEIMER P., Hydraulik, Leipzig 1914.
- [16] JASIEWICZ K., Soil consolidation under a load of the upper surface there of, Archives of Civil Engineering, 1968.
- [17] KISIEL I., DERSKI W., IZBICKI R., MRÓZ Z., Soil and Rock Mechanics, Series: Technical Mechanics, Vol. VII, PWN, Warsaw 1982, (in Polish).
- [18] LAMBE T.W., WHITMAN R.V., Soil Mechanics, Arkady, Warsaw 1978, (in Polish).
- [19] ŁYDŻBA D., Constitutive equations of gas-coal medium, Studia Geotechnica et Mechanica, 1991, 13(3–4).
- [20] ŁYDŻBA D., Application of the Asymptotic Homogenization Method in Soil and Rock Mechanics, Wrocław University of Technology Publishing House, Wrocaw 2002, (in Polish).
- [21] ModFlow: http://water.usgs.gov/ogw/modflow/
- [22] POLUBARINOVA-KOCHINA P.J., Teoriya dvizheniya podzemnykh vod, Nauka, Moscow, 1977.
- [23] STRZELECKI M., Quick sands effect on desert lands – example of filtration stability loss, Studia Geotechnica et Mechanica, 2013, Vol. XXXV, No. 1.
- [24] STRZELECKI T., BAUER J., AURIAULT J.L., Constitutive equation of a gas-filled two-phase medium, Transport in Porous Media, 1993, 10.
- [25] STRZELECKI T., AURIAULT J.L., BAUER J., KOSTECKI S., PUŁA W., Mechanics of HeterogeneousMedia, Theory of Homogenization, Lower Silesia Educational Publishers, 2008, (in Polish).
- [26] STRZELECKI T., KOSTECKI S., ŻAK, S., Modelling of Flows through Porous Media, Lower Silesia Educational Publishers, 2008, (in Polish).
- [27] WIECZYSTY A., Engineering Hydrogeology, PWN, Warsaw 1982, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-254c1519-e7d2-4a3f-a285-3de57845adff