PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermo-economic optimization of air bottoming cycles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work a thermo–economic optimization analysis is performed on two air bottoming cycle (ABC) configurations with and without intercooler in the bottoming cycle. Thermo-economic optimization modeling is developed and the effect of the mass flow rate ratio of bottoming cycle air mass flow rate with respect to the topping cycle air mass flow rate is examined in terms of both ABC plant efficiency and total operation cost.
Rocznik
Strony
211--220
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, College of Engineering, American University of Sharjah, PO Box 26666, Sharjah, United Arab Emirates
  • Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, P.O. Box 50329, 3603 Limassol, Cyprus
Bibliografia
  • [1] F. Khaldi, Air bottoming cycle for hybrid solar-gas power plants, in: Word Renewable Energy Congress, 2011, pp. 8–11.
  • [2] A. Poullikkas, An overview of current and future sustainable gas turbine technologies, Renewable and Sustainable Energy Reviews 9 (5) (2005) 409–443.
  • [3] T. Chmielniak, D. Czaja, S. Lepszy, Technical and economic analysis of the gas turbine air bottoming cycle, in: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2012, pp. 207–215.
  • [4] M. Korobitsyn, Industrial applications of the air bottoming cycle, Energy Conversion and Management 43 (9) (2002) 1311–1322.
  • [5] D. Czaja, T. Chmielniak, S. Lepszy, The selection of gas turbine air bottoming cycle for polish compressor stations, Journal of Power Technologies 93 (2) (2013) 67–77.
  • [6] W.M. Farrell, "Air cycle thermodynamic conversion system", US patent 4.751.814A, 1988.
  • [7] F. Wicks, The thermodynamic theory and design of an ideal fuel burning engine, Intersociety energy conversion Enginnering (1991) 474–481.
  • [8] G. Hirs, M. Wagener, M. Korobitsyn, Performance analysis of the dual gas turbine combined cycle, Thermodynamics and the design, analysis, and improvement of energy systems. New York: ASME Publ 35 (1995) 255–9.
  • [9] O. Bolland, M. Forde, B. Hande, Air bottoming cycle: use of gas turbine waste heat for power generation, Journal of engineering for gas turbines and power 118 (2) (1996) 359–368.
  • [10] R. Sandoz, J. Spelling, B. Laumert, T. Fransson, Air-based bottoming-cycles for water-free hybrid solar gas-turbine power plants, Journal of engineering for gas turbines and power 135 (10) (2013) 101701.
  • [11] M. Ghazikhani, M. Passandideh-Fard, M. Mousavi, Two new high-performance cycles for gas turbine with air bottoming, Energy 36 (1) (2011) 294–304.
  • [12] Y. S. Najjar, M. S. Zaamout, Performance analysis of gas turbine air-bottoming combined system, Energy Conversion and Management 37 (4) (1996) 399–403.
  • [13] R. Teflissi, A. Ataei, Effect of temperature and gas flow on the efficiencyof an air bottoming cycle, Journal of Renewable and Sustainable Energy 5 (2) (2013) 021409.
  • [14] J. Kaikko, L. Hunyadi, Air bottoming cycle for cogeneration of power, heat and cooling, Heat power cycles (2001) 187–194.
  • [15] J. Kaikko, L. Hunyadi, A. Reunanen, J. Larjola, Comparison between air bottoming cycle and organic rankine cycle as bottoming cycles, in: Proceedings of Second International Heat Powered Cycles Conference, HPC, Vol. 1, 2001, p. 195.
  • [16] F. C. Knopf, Modeling, analysis and optimization of process and energy systems, John Wiley & Sons, 2012.
  • [17] "MATLAB and Statistics Toolbox Release 2012b" Natick, Massachusetts, United States, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-253fd6b2-cf7b-482b-b1cf-1e0f3c657331
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.