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Abstract: One-dimensional heat conduction problem of friction for two bodies (half spaces) made of thermosensitive materials was consid-
ered. Solution to the nonlinear boundary-value heat conduction problem was obtained in three stages. At the first stage a partial linearization 
of the problem was performed by using Kirchhoff transform. Next, the obtained boundary-values problem by using the method of lines was 
brought to a system of nonlinear ordinary differential equations, relatively to Kirchhoff’s function values in the nodes of the grid on the spatial 
variable, where time is an independent variable. At the third stage, by using the Adams's method from DIFSUB package, a numerical solution 
was found to the above-mentioned differential equations. A comparative analysis was conducted (Och, 2014) using the results obtained with 
the proposed method and the method of successive approximations. 
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1. INTRODUCTION 

Almost all elements of machine that work together are accom-
panied by the friction processes. Influenced by the friction forces, 
on the contact surfaces of the body, the heat is generated, which - 
as the heat fluxes – penetrates the elements of the system and 
heats them up. The temperature increase may lead to changes in 
physical and chemical properties of friction materials, friction coef-
ficients and termomechanical wear, etc. (Chichinadze et al., 1979; 
Rhee et al., 1991; Kalin, 2004). 

One of the methods to estimate the distribution of transient tem-
perature fields in elements of heavily loaded nodes of friction is the 
use of analytical models, where the real friction elements (pad, disk) 
are replaced by half-limited (half space) or limited (layer) bodies 
(Nosko et al., 2009; Kuciej, 2012; Yevtushenko and Kuciej, 2012). 
Most of the models were developed basing on the solution to linear 
boundary-values problems of heat conduction, where changes in 
sliding velocity and pressure with time; inhomogeneity of friction 
materials; or different types of boundary conditions on the friction 
surface and on the free surfaces of elements were all taken into 
account (Sazonov, 2008; Belyakov and Nosko, 2010; Yevtushenko 
et al., 2013). But at the same time, the above solutions do not take 
into account the changes (caused by the increase of temperature) 
in coefficients of friction and wear, and thermal properties of mate-
rials. 

Dependency of coefficients of friction and wear on the temper-
ature were considered when the one-dimensional nonlinear fric-
tional heating models were developed in articles (Olesiak et al., 
1997; Evtushenko and Pir’ev, 1999) and monographs (Pyr’yev, 
2004; Awrejcewicz and Pyr’yev, 2009). 

Models that take into account the change of the thermal-physi-
cal properties of friction materials along with increasing tempera-
ture were proposed for the materials with a so-called simple thermal 
nonlinearity in articles (Och, 2013, Yevtushenko et al., 2014a, b), 
and for the materials with an arbitrary nonlinearity - in articles (Och, 
2014; Yevtushenko et al., 2014c, 2015). Solutions to the respective 
thermal problems of friction were obtained by using the iterative 

methods (Kushnir, Popowych, 2011). 
The main purpose of this paper is to show the effectiveness of 

the methods of lines in solving nonlinear boundary-value problems 
of heat conduction, with the heat generation due to friction taken 
into account. 

2. STATEMENT OF THE PROBLEM 

Let two thermally sensitive half spaces be pressed at infinity by 
constant pressure 𝑝0 along the axis 𝑧 (Fig. 1). At the time 𝑙 = 0, 
taken as the initial, bodies begin to slide relatively to each other at 

a constant speed 𝑉0 in the direction of the 𝑦 axis in accordance 
with a Cartesian coordinate system 𝑂𝑥𝑦𝑧. The initial temperature 

of the bodies is the same and equal to 𝑇0. On the contact surface, 
under the influence of friction forces, the heat is generated, which 
in the form of heat fluxes penetrates each bodies in such a way that 

their sum is equal to the specific power of friction 𝑞0 = 𝑓𝑉0𝑝0 
(Yevtushenko and Kuciej, 2012). Thermal contact of considered 
bodies is imperfect, i.e. through the friction surface the heat flow 
takes place at a constant value of the thermal conductivity 
of contact coefficient. We assume the Podstrigach's condition 
of imperfect thermal contact, which take into account the thermal 
resistance of a thin layer between bodies at friction (Podstrigach, 
1963). Reviews of researches into imperfect frictional thermal 
contact are given in the papers (Nosko et al., 2009, Belyakov 
and Nosko, 2010; Kuciej, 2012). 

Further, all values referring to the upper and lower half spaces 
will respectively have subscripts 1 and 2. 

We assume that the coefficients of thermal conductivity 

𝐾𝑙 and heat capacity 𝑐𝑙 of the bodies material depend on the 

temperature 𝐾𝑙 , 𝑙 = 1,2:  

𝐾𝑙(𝑇𝑙) = 𝐾𝑙,0 𝐾𝑙
∗(𝑇𝑙), 𝐾𝑙,0 ≡ 𝐾𝑙(𝑇0),

𝑐𝑙(𝑇𝑙) = 𝑐𝑙,0 𝑐𝑙
∗(𝑇), 𝑐𝑙,0 ≡ 𝑐𝑙(𝑇0),

         (1) 

and their density ρ
𝑙
, 𝑙 = 1, 2 is constant. 
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Fig. 1. The scheme of frictional heating 

Taking into account the above-mentioned assumptions, in or-
der to find the temperature of the sliding bodies, we have the fol-
lowing nonlinear boundary-values heat conduction problem 
(Och, 2014): 
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 𝐵𝑖 =
ℎ 𝑎

𝐾2,0
, 𝑇𝑎 =

𝑞0𝑎

𝐾2,0
, 𝑇0

∗ =
𝑇0

𝑇𝑎
, 𝑇𝑙

∗ =
𝑇𝑙

𝑇𝑎
 (9) 

𝑘𝑙
∗(𝑇𝑙

∗) =
𝐾𝑙

∗(𝑇𝑙
∗)

𝑐𝑙
∗(𝑇𝑙

∗)
, 𝑙 = 1,2  (10) 

where: 𝛼 – is the effective depth of the heat penetration 
(Chichinadze et al., 1979). 

3. KIRCHHOFF TRANSFORMATION 

We introduce the Kirchhoff’s functions Θ𝑙(ζ, τ) (Kirchhoff, 
1894): 

Θ𝑙(ζ, τ) = ∫ 𝐾𝑙
∗(𝑇𝑙

∗) 𝑑𝑇𝑙
∗, 𝑙 = 1,2

𝑇∗

𝑇0
∗    (11) 

As a result, we obtained a partially linearized boundary-value 

problems in relation to the functions Θ𝑙 (ζ, τ): 
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                                                                                                   (15) 

Θ𝑙
(𝑖)

(ζ, τ) → 0,   |ζ| → ∞,   τ ≥ 0,   𝑙 = 1,2   (16) 

Θ𝑙
(𝑖)

(ζ, 0) = 0,   |ζ| < ∞,   𝑙 = 1,2   (17) 

where: 

𝑘𝑙
∗(𝑇∗) = 𝐾𝑙

∗(𝑇∗)/𝑐𝑙
∗(𝑇∗), 𝑙 = 1,2   (18) 

 Solution to partially linearized boundary-values problem  
(12)–(17) we obtain by using the methods of lines (Hall, Watt, 
1976). 

4. METHOD OF LINES 

We choose layer in each half spaces 0 ≤ |ζ| ≤ δ𝑙, 𝑙 = 1,2 
in such a way that |ζ| = δ𝑙 boundary condition can be fulfilled (16). 

Let us divide compartments [0, δ𝑙], 𝑙 = 1,2  into 𝑛𝑙 ∈ 𝑁 parts 
with the points: 

ζ𝑙,𝑗 = (−1)𝑙+1𝑗Δζ𝑙,Δζ𝑙 = δ𝑙/𝑛𝑙,𝑗 = 0,1, . . . , 𝑛𝑙 , 𝑙 = 1,2  (19) 

On the grid (19) we introduce central finite-difference 
approximations of partial derivatives (Ozisik, 2000): 

𝜕𝛩𝑙(𝜁,𝜏)

𝜕𝜁
≈

𝛩𝑙,𝑗+1(𝜏)−𝛩𝑙,𝑗−1(𝜏)

2𝛥𝜁𝑙
   (20) 

𝜕2𝛩𝑙(𝜁,𝜏)

𝜕𝜁2 ≈
𝛩𝑙,𝑗+1(𝜏)−2𝛩𝑙,𝑗(𝜏)+𝛩𝑙,𝑗−1(𝜏)

(𝛥𝜁𝑙)2    (21) 

where: Θ𝑙,𝑗(τ) ≡ Θ𝑙,𝑗(ζ𝑙,𝑗τ), τ ≥ 0, 𝑗 = 0,1, . . . , 𝑛𝑙 , 𝑙 = 1,2. 

Taking into account the formulas (19)–(21), the boundary-value 
problem (12)–(17) can be written in the form: 

𝛩1,𝑗+1(𝜏)−2𝛩1,𝑗(𝜏)+𝛩1,𝑗−1(𝜏)

(𝛥𝜁1)2 =
1

𝑘0
∗  𝑘1,𝑗

∗ (𝜏)

𝑑𝛩1,𝑗(𝜏)

𝑑𝜏
,

 𝑗 = 0,1, . . . , 𝑛1,
   (22) 

𝛩2,𝑗+1(𝜏)−2𝛩2,𝑗(𝜏)+𝛩2,𝑗−1(𝜏)

(𝛥𝜁2)2 =
1

𝑘2,𝑗
∗ (𝜏)

𝑑𝛩2,𝑗(𝜏)

𝑑𝜏
,

  𝑗 = 0,1, . . . , 𝑛2,
                         (23) 

𝛩2,1(𝜏)−𝛩2,−1(𝜏)

2𝛥𝜁2
− 𝐾0

∗ 𝛩1,1(𝜏)−𝛩1,−1(𝜏)

2𝛥𝜁1
= 1   (24) 

𝛩2,1(𝜏) − 𝛩2,−1(𝜏)

2𝛥𝜁2

+ 𝐾0
∗

𝛩1,1(𝜏) − 𝛩1,−1(𝜏)

2𝛥𝜁1

= 𝐵𝑖 [𝑇1,0
∗ (𝜏) − 𝑇2,0

∗ (𝜏)]
 

 (25)

 

𝛩𝑙,𝑛𝑙+1(𝜏) − 𝛩𝑙,𝑛𝑙−1(𝜏) = 0, 𝑙 = 1,2   (26) 

𝛩𝑙,𝑗(0) = 0, 𝑗 = 0,1, . . . , 𝑛𝑙, 𝑙 = 1,2   (27) 

where: 

𝑇𝑙,𝑗
∗ (τ) ≡ 𝑇∗(ζ𝑙,𝑗 , τ), 𝑘𝑙,𝑗

∗ (τ) ≡ 𝑘𝑙
∗[𝑇𝑙,𝑗

∗ (τ)] 

τ > 0,𝑗 = 0,1, . . . , 𝑛𝑙   (28) 

From the boundary conditions (24) and (25) on the contact 

surface ζ = 0 we find: 
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𝛩𝑙,−1(𝜏) = 𝛩𝑙,1(𝜏) + (−1)𝑙−1𝑔𝑙(𝜏), 𝜏 ≥ 0, 𝑙 = 1,2   (29) 

𝑔1(𝜏) = {1 − 𝐵𝑖[𝑇1,0
∗ (𝜏) − 𝑇2,0

∗ (𝜏)]}𝛥𝜁1/𝐾0
∗   (30) 

𝑔2(𝜏) = {1 + 𝐵𝑖[𝑇1,0
∗ (𝜏) − 𝑇2,0

∗ (𝜏)]}𝛥𝜁2   (31) 

By introducing functions: 

𝐴1,𝑗(𝜏) =
𝑘0

∗𝑘1,𝑗
∗ (𝜏)

(𝛥𝜁1)2 , 𝐴2,𝑗(𝜏) =
𝑘2,𝑗

∗ (𝜏)

(𝛥𝜁2)2   (32) 

and taking into account the relations (26), (29)–(31), Cauchy 
problem for a system of ordinary differential equations (22)–(27) we 
write in the form: 

𝑑𝛩𝑙,0(𝜏)

𝑑𝜏
= 𝐴𝑙,0(𝜏)[2𝛩1,1(𝜏) − 2𝛩1,0(𝜏) + (−1)𝑙−1𝑔𝑙(𝜏)]    

τ > 0   (33) 

𝑑𝛩𝑙,𝑗(𝜏)

𝑑𝜏
= 𝐴𝑙,𝑗(𝜏)[𝛩𝑙,𝑗+1(𝜏) − 2𝛩𝑙,𝑗(𝜏) + 𝛩𝑙,𝑗−1(𝜏)] 

𝜏 > 0, 𝑗 = 1,2, . . . , 𝑛𝑙 − 1
   (34) 

𝑑𝛩𝑙,𝑛𝑙
(𝜏)

𝑑𝜏
= 𝐴𝑙,𝑛𝑙

(𝜏)[2𝛩𝑙,𝑛𝑙−1(𝜏) − 2𝛩𝑙,𝑛𝑙
(𝜏)], 𝜏 > 0   (35) 

Θ𝑙,𝑗(0) = 0, 𝑗 = 0,1, . . . , 𝑛 = 𝑛1 + 𝑛2 + 2, 𝑙 = 1,2   (36) 

Integration of the problem (33)–(36) is carried out by using the 
Adams’s method. The method was carried out in DIFSUB 
procedure written in FORTRAN (Gear, 1971). This procedure 
is used to perform one step of the independent variable 𝜏, and 
therefore the numerical integration of the initial value problem (33)–
(36) at a predetermined time interval requires a multiple “call” of this 
procedure. The detailed information about the package DIFSUB 
are contained in the monograph (Krupowicz, 1986). 

As a result of solving the initial problem (33)–(36), the values 
Θ𝑙,𝑗(τ) of Kirchhoff's function (11) were found in the nodes of the 

grid (19) at a specific point of dimensionless time 𝜏. In order to 
make the transition from Kirchhoff;s function to respective values 

𝑇𝑙,𝑗
∗ (τ) of dimensionless temperature, we must define the functions 

𝐾𝑙
∗(𝑇𝑙

∗) and 𝑐𝑙
∗(𝑇𝑙

∗), 𝑙 = 1,2 in the formulas (1). We assume they 
have the polynomial form:  

𝐾𝑙
∗(𝑇𝑙

∗) = ∑ 𝑎𝑙,𝑛(𝑇𝑙
∗)𝑛𝑁𝑙

𝑛=0 , 𝑐𝑙
∗(𝑇∗) = ∑ 𝑏𝑙,𝑛(𝑇𝑙

∗)𝑛𝑀𝑙
𝑛=0   

𝑙 = 1, 2   (37) 

with known coefficients 𝑎𝑙,𝑛 and 𝑏𝑙,𝑛 (Yune, Bryant 1989). Then, 

with regard to equations (11) and (37), the relationship between the 
dimensionless temperature and the Kirchhoff’s function will be also 
polynomial (Och, 2014): 

𝑇𝑙,𝑗
∗ (τ) = ∑ 𝑐𝑙,𝑛[Θ𝑙,𝑗(

𝑁𝑙
𝑛=0 τ)]𝑛, τ ≥ 0, 𝑗 = 0,1, . . . , 𝑛𝑙 

𝑙 = 1, 2.   (38) 

We also note that at the constant thermal properties of the materials 
(𝐾𝑙

∗(𝑇∗)=𝑐𝑙
∗(𝑇∗) = 1) from the formula (11) it follows the linear 

relationship between temperature and the Kirchhoff function: 

𝑇𝑙
∗(ζ, τ) = 𝑇0

∗ + Θ𝑙
∗(ζ, τ), |ζ| < ∞,  𝑙 = 1,2  (39) 

5. NUMERICAL ANALYSIS 

Calculations have been performed for the same materials of the 
friction pair (aluminium AL MMC – metal-cermic FMC-845) and 
at the same input parameters as in article (Och, 2014), in which 
analytical-numerical solution of boundary-values problem (2)–(7) 

was found by method of successive approximations. Thermophys-

ical properties of materials at initial temperature 𝑇0 = 20℃ are 

given in Tab. 1, and the values of the coefficients (𝑎𝑙,𝑛, 𝑏𝑙,𝑛, 𝑐𝑙,𝑛 ) 
in the formulas (37)–(39) – in Tab. 2, in the above-mentioned paper. 
Dimensionless thickness of the layers were the same and equal 

𝛿1 = 𝛿2 = 𝛿0 = 5, the numbers of compartments breakdown 
of each layer were the same, too: 𝑛1 = 𝑛2 = 𝑛0. Thus, the initial 

problem (33)–(36) with a number of equations 𝑛 = 2𝑛0 + 2 was 
solved by the procedure DIFSUB. 

 
Fig. 2. Dependence of dimensionless temperature 𝑇𝑙

∗, 𝑙 = 1,2  

 on the contact surface 𝜁 = 0 on parameter 𝑛, at 𝜏 = 2  

The convergence of the calculation process of dimensionless 
temperature on the friction surface depending on the parameter 
n inversely related to the dimensionless length of the step grid 

Δζ1 = Δζ2 = δ0/𝑛0, is shown in Fig. 2. For a given relative ac-

curacy of the calculations EPS = 10−6, the temperatures of both 

materials are almost unchanged at 𝑛 ≥ 20. The thermal conduc-
tivity of metal-ceramic FMC-845 is less than the conductivity of the 
aluminum matrix composite AL MMC (Och, 2014). As the result, the 
temperature of the friction surface of the metal-ceramics is higher 
than the temperature on the surface of the composite. 

 
Fig. 3. Evolutions of dimensionless temperature 𝑇𝑙

∗, 𝑙 = 1,2 on the 

contact surface 𝜁 = 0 , obtained by using the method of lines 

(solid lines), and by using the method of successive 
approximations (Och, 2014, dashed lines).  
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Evolutions of dimensionless temperature on the contact surface 
during sliding at a constant speed for the considered friction pair, 
are presented in Fig. 3. In this figure solid lines shows the results 
of calculations obtained by method of lines, using the procedure 
DIFFSUB, while the dashed lines presents the results of calcula-
tions obtained by successive approximations and presented in the 
article (Och, 2014). We may see that the dimensionless tempera-
ture curves calculated for aluminum matrix composite AL MMC by 
using both methods are practically the same. For metal-ceramic 
FMC-845 from about half of the heating time the slight difference 
between the respective curves is noticeable.  

Isotherm of friction elements AL MMC and FMC-845 in the co-

ordinate system 𝜁𝜏 are presented in Fig. 4. With the beginning 

of sliding temperature in any cross-section relative to the ζ in-
creases. Maximum temperatures are reached at the surfaces of the 

friction elements at 𝜁 = 0 and the temperature of both bodies de-
creases with increasing distance from this surface. High thermal 
conductivity of AL MMC and substantially smaller of FMC-845 
causes that the effective depth of heat penetration of aluminium 
composite is two times greater than the metal-ceramic. 

When using iterative methods to solve nonlinear thermal prob-
lems of friction at the initial "zero" step, we must have a solution 
(preferably the analytical one) to the corresponding linear problems 
(Yevtushenko et al., 2015). The methodology proposed in this pa-
per proves to be effective when it is difficult or even impossible to 
obtain such analytical solutions of linear problems. For example 
there is a change of the specific power of friction in time in the form 
𝑞(𝜏) = 𝑞0𝑞∗(𝜏), when 𝑞∗(𝜏) = 1 + 𝑠𝑖𝑛(𝜔𝜏), 𝜏 ≥ 0, where 

for 𝜔 = 0 we obtain the problem considered above. Change with 

time of friction elements temperature at constant (𝜔 = 0) and os-

cillating (𝜔 = 50) (Kuciej, 2011) specific power of friction is pre-
sented in Fig. 5. 

 

 
Fig. 4. Spatial and temporal distribution of dimensionless temperature  

 
Fig. 5. Evolution of dimensionless temperature 𝑇𝑙

∗, 𝑙 = 1,2 on the 

contact surface 𝜁 = 0  at 𝜔 = 0  (solid lines) and 𝜔 = 50 

(dashed lines) 

When using iterative methods to solve nonlinear thermal prob-
lems of friction at the initial "zero" step, we must have a solution 
(preferably the analytical one) to the corresponding linear problems 
(Yevtushenko et al., 2015). The methodology proposed in this pa-
per proves to be effective when it is difficult or even impossible to 
obtain such analytical solutions of linear problems. For example 
there is a change of the specific power of friction in time in the form 

𝑞(𝜏) = 𝑞0𝑞∗(𝜏), when 𝑞∗(𝜏) = 1 + 𝑠𝑖𝑛(𝜔𝜏), 𝜏 ≥ 0, where 

for 𝜔 = 0 we obtain the problem considered above. Change with 
time of friction elements temperature at constant (𝜔 = 0) and os-

cillating (𝜔 = 50) (Kuciej, 2011) specific power of friction is pre-
sented in Fig. 5. 

6. CONCLUSIONS 

The solution to one-dimensional nonlinear heat conduction 
problem of friction for two thermosensitive was obtained by method 
of lines. 

The calculations were conducted for the friction pair (aluminium 
AL MMC – metal-cermic FMC-845), whose materials are arbitrary 
nonlinear. Comparison of the results obtained by the method of 
lines with the results calculated by the method of successive ap-
proximations (Och, 2014) was  carried out.  

Application of the numerical method presented in the article, 
preceded by the preparation of an appropriate analytical problem 
(partial linearization), gives perspective to obtain new analytical-nu-
merical solutions to nonlinear heat conduction problems of friction, 
which cannot be solved by using analytical methods. 

Nomenclature: 𝑎 – characteristic dimension; 𝑏𝑖 – Biot number; 𝑐 – spe-

cific heat; 𝑐0 – specific heat at an initial temperature; 𝑓 – friction coefficient; 

ℎ – coefficient of thermal conductivity of contact; 𝐾 –  coefficient of thermal 

conductivity; 𝐾0 – coefficient of thermal conductivity at an initial tempera-

ture; 𝑘 – coefficient of thermal diffusivity; 𝑝0 – pressure; 𝑞0 – specific 
power of friction; 𝑇 – temperature; 𝑇0 – initial temperature; 𝑇∗ – dimen-

sionless temperature; 𝑡 – time; 𝑉 – sliding speed; 𝑧 – spatial coordinate; 

𝛩 – Kirchhoff’s function; 𝜌 – specific density; 𝜏 – Fourier number; 𝜁 – di-

mensionless spatial coordinate. 
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