PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of Rock Joints Interface Under Cyclic Loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of numerical simulation of the material interface response under monotonic and cyclic loading is of fundamental scientific and engineering importance. In fact, such interfaces occur in most engineering and geotechnical structures. The present work is devoted to the deformational response analysis of contact interfaces under monotonic and cyclic loads. The class of materials includes rock and structural joints, soil structure interfaces, masonry and cementitious joints, localized shear bands and so on. The aim of the proposed model is to simulate the cyclic shear test under constant normal load. The associated dilatancy effect is associated with the configurational effects of asperity interaction or dilatancy of wear debris layer. The large primary asperities are assumed as responsible for interfacial dilation and small size asperities as governing frictional sliding and hysteresis response. The elliptic loading yield function is assumed to translate and rotate during progressive or reverse loading events. The model formulation is discussed and confronted with experimental data.
Wydawca
Rocznik
Strony
36--47
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • University Of Technology, Faculty Of Automotive And Construction Machinery Engineering, Institute Of Construction Machinery
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Construction Machinery
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Construction Machinery
Bibliografia
  • [1] Bahaaddini M., Hagan P.C., Mitra R., Khosravi M.H.: Experimental and numerical study of asperity degradation in the direct shear test, Engineering Geology 204 (2016), 41–52
  • [2] Bahaaddini M., Sharrock G., Hebblewhite B.K.: Numerical direct shear tests to model the shear behaviour of rock joints, Computers and Geotechnics 51 (2013), 101–115
  • [3] Dafalias Y.F., Popov E.P.: A model of nonlinearly hardening materials for complex loading, Acta Mechanica (1975), 21:173– 192
  • [4] Fathi A., Moradian Z., Rivard P., Ballicy G., Boyd A.J.: Geometric Effect of Asperities on Shear Mechanism of Rock Joints, Rock Mech Rock Eng (2016) 49:801–820, DOI 10.1007/s00603-015- 0799-6
  • [5] Hashiguchi K.: Constitutive equations of elastoplastic materials with anisotropic hardening and elastic-plastic transition, J. Appl. Mech., ASME (1981) 48:297–301
  • [6] Hoek E. (ed.): Practical Rock Engineering, 2007
  • [7] Huang M., Chen Y., Gu X.: Discrete element modeling of soil-structure interface behavior under cyclic loading, Computers and Geotechnics 107 (2019), 14–24
  • [8] Indraratna B., Thirukumaran S., Brown E.T., Zhu SP.: Modelling the Shear Behaviour of Rock Joints with Asperity Damage Under Constant Normal Stiffness, Rock Mech. Rock Eng. (2015) 48:179–195, DOI 10.1007/s00603-014-0556-2
  • [9] Jarzębowski A., Mróz Z.: On slip and memory rules in elastic, friction contact problems, Acta Mechanica, 102, 199–216 (1994)
  • [10] Kamonphet T., Khamrat S., Fuenkajorn K.: Effects of cyclic shear loads on strength, stiffness and dilation of rock fractures, Songklanakarin J. Sci. Technol. (2015), 37 (6), 683–690
  • [11] Kou M., Liu X., Tang S., Wang Y.: Experimental study of the prepeak cyclic shear mechanical behaviors of artificial rock joints with multiscale asperities, Soil Dynamics and Earthquake Engineering, 120 (2019) 58–74
  • [12] Lee H.S., Park Y.J., Cho T.F., You K.H.: Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading, International Journal of Rock Mechanics & Mining Sciences, 38 (2001), 967–980
  • [13] Li, Y. Oh, J., Mitra, R., Hebblewhite, B.: A joint asperity degradation model based on the wear process, 49th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 28 June- 1 July 2015.
  • [14] Liu Q., Tian Y., Liu D., Jiang Y.: Updates to JRC-JCS model for estimating the peak shear strength of rock joints based on quantified surface description, Engineering Geology 228 (2017), 282–300
  • [15] Liu X.G., Zhu W.C., Yu Q.L., Chen S.J., Li R.F.: Estimation of the joint roughness coefficient of rock joints by consideration of two-order asperity and its application in double-joint shear tests, Engineering Geology 220 (2017) 243–255
  • [16] Liu X.R., Kou M.M., Lu Y.M., Liu Y.Q.: An experimental investigation on the shear mechanism of fatigue damage in rock joints under pre-peak cyclic loading condition, International Journal of Fatigue 106 (2018) 175–184
  • [17] Ma S., Chuan H., Zhao Z., Nie W., Zhu X., Zhang Z.: Modeling of Rock Joints Under Cyclic Loading Conditions Using Discontinuous Deformation Analysis, Rock Mech Rock Eng (2017), 50:1205–1215, DOI 10.1007/s00603-016-1158-y
  • [18] Ma S., He C., Zhao Z., Nie W. Zhu X., Zhang Z.: Modeling of Rock Joints Under Cyclic Loading Conditions Using Discontinuous Deformation Analysis, Rock Mech Rock Eng. (2017), 50:1205– 1215, DOI 10.1007/s00603-016-1158-y
  • [19] Maciejewski and Mróz Z.: Deformation response of geomaterial interfaces coupled with progressive damage and wear, 37th Solid Mechanics Conference SolMech 2010, Book of Abstracts, 2010.
  • [20] Maciejewski J., Jarzębowski A.: Application of kinematically admissible solutions to passive earth pressure problems, International Journal of Geomechanics, 2004, vol. 4 (2), 127–136
  • [21] Maciejewski J.: Analiza stanów pokrytycznych w procesach urabiania gruntów, rozprawa doktorska, IPPT PAN, Warszawa 1996
  • [22] Mirzaghorbanali A., Nemcik J., Aziz N.: Effects of Cyclic Loading on the Shear Behaviour of Infilled Rock Joints Under Constant Normal Stiffness Conditions, Rock Mech Rock Eng. (2014) 47:1373–1391
  • [23] Mróz Z., Maciejewski J.: Post-critical response of soils and shear band evolution, Proc. 3rd Int. Workshop On localization and Bifurcation Theory for Soils and Rocks, Grenoble (Aussois), France, 19–32, 1994
  • [24] Mróz Z., Norris V.A., Zienkiewicz O.C.: An anisotropic hardening model for soils and its application to cyclic loading, Int. J. for Numerical and Analytical Meth. in Geomech. (1978) 2:203–221
  • [25] Mróz Z., Pietruszczak S.: A constitutive model for sand with anisotropic hardening rule, Int. J. for Numerical and Analytical Meth. in Geomech. (1983) 7:305–320
  • [26] Niktabar S.M.M., Rao S.K., Shrivastava A.K.: Effect of rock joint roughness on its cyclic shear behavior, Journal of Rock Mechanics and Geotechnical Engineering, 9 (2017), 1071–1084
  • [27] Nova R.: A constitutive model for soils under monotonic and cyclic loadings, Soil Mechanics-Transient Cyclic Loads, Eds. Pande G.N. and Zienkiewicz O.C., John Wiley & Sons Inc., 343–373
  • [28] Oda M.: A mechanical and statistical model of granular material, Soils and Foundations (1974), 14, 1:13–27
  • [29] Park JW., Song JJ.: Numerical simulation of a direct shear test on a rock joint using a bonded-particle model, International Journal of Rock Mechanics & Mining Sciences 46 (2009), 1315–1328
  • [30] Roscoe K.H., Burland J.B.: On the generalized stress-strain behavior of ‘wet’ clay, Engineering Plasticity, Eds. Heyman and Leckie F.A., Cambridge Univ. Press, Cambridge, 535–608
  • [31] Stupkiewicz S., Mróz Z.: Modelling of friction and dilatancy effects at brittle interfaces for monotonic and cyclic loading, Journ. Theoret. Appl. Mech., 39 (2001), 707–739
  • [32] Tang Z., Liu Q., Xia C., Song Y., Huang J., Wang C.: Mechanical model for predicting closure behavior of rock joints under normal stress. Rock Mech Rock Eng (2014), 47:2287–2298
  • [33] Xia C, Tang Z, Xiao W, Song Y.: New peak shear strength criterion of rock joints based on quantified surface, Rock Mech. Rock Eng. (2014) 47 :387–400, doi:10.1007/s00603-013- 0395-6
  • [34] Zhang Q., Wu C., Fei X., Jang B.A., Liu D.: Time-dependent behavior of rock joints considering asperity degradation, Journal of Structural Geology 121 (2019), 1–9
  • [35] Zheng B., Qi S.: A new index to describe joint roughness coefficient (JRC) under cyclic shear, Engineering Geology, 212 (2016), 72–85
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-253f131d-c478-4c48-ae57-dd0da2f09a71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.