PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on vibration-based early diagnostic system for excavator motor bearing using 1-D CNN

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In mining, super-large machines such as rope excavators are used to perform the main mining operations. A rope excavator is equipped with motors that drive mechanisms. Motors are easily damaged as a result of harsh mining conditions. Bearings are important parts in a motor; bearing failure accounts for approximately half of all motor failures. Failure reduces work efficiency and increases maintenance costs. In practice, reactive, preventive, and predictive maintenance are used to minimize failures. Predictive maintenance can prevent failures and is more effective than other maintenance. For effective predictive maintenance, a good diagnosis is required to accurately determine motor-bearing health. In this study, vibration-based diagnosis and a one-dimensional convolutional neural network (1-D CNN) were used to evaluate bearing deterioration levels. The system allows for early diagnosis of bearing failures. Normal and failure-bearing vibrations were measured. Spectral and wavelet analyses were performed to determine the normal and failure vibration features. The measured signals were used to generate new data to represent bearing deterioration in increments of 10%. A reliable diagnosis system was proposed. The proposed system could determine bearing health deterioration at eleven levels with considerable accuracy. Moreover, a new data mixing method was applied.
Rocznik
Strony
65--80
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
  • Akita University, Faculty of International Resource Sciences, Japan
  • Akita University, Faculty of International Resource Sciences, Japan
  • Akita University, Faculty of International Resource Sciences, Japan
autor
  • Akita University, Faculty of International Resource Sciences, Japan
  • Akita University, Faculty of International Resource Sciences, Japan
  • Hokkaido University, Division of Sustainable Resources Engineering, Japan
Bibliografia
  • [1] Introduction of the Baganuur mine. http://baganuurmine.mn/%D1%82%D0%B0%D0%BD%D0%B8%D0%BB%D1%86%D1%83%D1%83%D0%BB%D0%B3%D0%B0/ (accessed Nov. 02, 2021).
  • [2] Singh GK, Ahmed Saleh Al Kazzaz S. Induction machine drive condition monitoring and diagnostic research - a survey. Elec Power Syst Res Feb. 2003;64(2):145-58. https://doi.org/10.1016/S0378-7796(02)00172-4.
  • [3] He F, Xie G, Luo J. Electrical bearing failures in electric vehicles. Friction Feb. 2020;8(1):4-28. https://doi.org/10.1007/s40544-019-0356-5.
  • [4] Irfan M, Saad N, Ibrahim R, Asirvadam VS, Magzoub M, Hung NT. A non-invasive method for condition monitoring of induction motors operating under arbitrary loading conditions. Arabian J Sci Eng Sep. 2016;41(9):3463-71. https://doi.org/10.1007/s13369-015-1996-z.
  • [5] Zhang S, et al. Model-based analysis and quantification of bearing faults in induction machines. IEEE Trans Ind Appl May 2020;56(3):2158-70. https://doi.org/10.1109/TIA.2020.2979383.
  • [6] Ozcan IH, Devecioglu OC, Ince T, Eren L, Askar M. Enhanced bearing fault detection using multichannel, multilevel 1D CNN classifier. Electr Eng May 2021. https://doi.org/10.1007/s00202-021-01309-2.
  • [7] A guide to preventing failure. ABB; 2015. Accessed: Nov. 02, 2021.
  • [Online]. Available: https://new.abb.com/docs/librariesprovider53/about-downloads/motors_ebook.pdf?sfvrsn_4.
  • [8] Shen C, Wang D, Kong F, Tse PW. Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier. Measurement May 2013;46(4):1551-64. https://doi.org/10.1016/j.measurement.2012.12.011.
  • [9] Jia F, Lei Y, Lin J, Zhou X, Lu N. Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech Syst Signal Process May 2016;72(73):303-15. https://doi.org/10.1016/j.ymssp.2015.10.025.
  • [10] Li C, Sanchez R-V, Zurita G, Cerrada M, Cabrera D, Vàsquez RE. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. Mech Syst Signal Process Aug. 2016;76(77):283-93. https://doi.org/10.1016/j.ymssp.2016.02.007.
  • [11] Shao H, Jiang H, Zhang H, Duan W, Liang T, Wu S. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mech Syst Signal Process Feb. 2018;100:743-65. https://doi.org/10.1016/j.ymssp.2017.08.002.
  • [12] Ince T, et al. Early bearing fault diagnosis of rotating machinery by 1D self-organized operational neural networks. IEEE Access 2021;9:139260-70. https://doi.org/10.1109/ACCESS.2021.3117603.
  • [13] Guan X, Chen G. Sharing pattern feature selection using multiple improved genetic algorithms and its application in bearing fault diagnosis. J Mech Sci Technol Jan. 2019;33(1):129-38. https://doi.org/10.1007/s12206-018-1213-6.
  • [14] Zhang X, Chen G, Hao T, He Z. Rolling bearing fault convolutional neural network diagnosis method based on casing signal. J Mech Sci Technol Jun. 2020;34(6):2307-16. https://doi.org/10.1007/s12206-020-0506-8.
  • [15] Eren L, Ince T, Kiranyaz S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. J Signal Process Syst Feb. 2019;91(2):179-89. https://doi.org/10.1007/s11265-018-1378-3.
  • [16] Chen C-C, Liu Z, Yang G, Wu C-C, Ye Q. An improved fault diagnosis using 1D-convolutional neural network model. Electronics Dec. 2020;10(1):59. https://doi.org/10.3390/electronics10010059.
  • [17] Wang D, Guo Q, Song Y, Gao S, Li Y. Application of multiscale learning neural network based on CNN in bearing fault diagnosis. J Signal Process Syst Oct. 2019;91(10):1205-17. https://doi.org/10.1007/s11265-019-01461-w.
  • [18] Chen X, Zhang B, Gao D. Bearing fault diagnosis base on multi-scale CNN and LSTM model. J Intell Manuf Apr. 2021;32(4):971-87. https://doi.org/10.1007/s10845-020-01600-2.
  • [19] Li G, Deng C, Wu J, Xu X, Shao X, Wang Y. Sensor data-driven bearing fault diagnosis based on deep convolutional neural networks and S-transform. Sensors Jun. 2019;19(12):2750. https://doi.org/10.3390/s19122750.
  • [20] Randall RB, Antoni J. Rolling element bearing diagnostics - a tutorial. Mech Syst Signal Process Feb. 2011;25(2):485-520. https://doi.org/10.1016/j.ymssp.2010.07.017.
  • [21] Ding Yunhao, Jia Minping. A multi-scale convolutional auto-encoder and its application in fault diagnosis of rolling bearings, vol. 35; 2019. p. 471. https://doi.org/10.3969/j.issn.1003-7985.2019.04.003. 423.
  • [22] Guo L, Lei Y, Xing S, Yan T, Li N. Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines With Unlabeled data. IEEE Trans Ind Electron Sep. 2019;66(9):7316-25. https://doi.org/10.1109/TIE.2018.2877090.
  • [23] Lei Y, Lin J, Zuo MJ, He Z. Condition monitoring and fault diagnosis of planetary gearboxes: a review. Measurement Feb. 2014;48:292-305. https://doi.org/10.1016/j.measurement.2013.11.012.
  • [24] Samanta B. Artificial neural networks and genetic algorithms for gear fault detection. Mech Syst Signal Process 2004;18(5):1273-1282, Sep. https://doi.org/10.1016/j.ymssp.2003.11.003.
  • [25] Bin GF, Gao JJ, Li XJ, Dhillon BS. Early fault diagnosis of rotating machinery based on wavelet packets - empirical mode decomposition feature extraction and neural network. Mech Syst Signal Process Feb. 2012;27:696-711. https://doi.org/10.1016/j.ymssp.2011.08.002.
  • [26] Wang Y, Yang C, Xu D, Ge J, Cui W. Evaluation and prediction method of rolling bearing performance degradation based on attention-LSTM. Shock Vib May 2021;2021:1-15. https://doi.org/10.1155/2021/6615920.
  • [27] Senjoba L, Sasaki J, Kosugi Y, Toriya H, Hisada M, Kawamura Y. One-dimensional convolutional neural network for drill bit failure detection in rotary percussion drilling. Mining Nov. 2021;1(3):297-314. https://doi.org/10.3390/mining1030019.
  • [28] Schmidhuber J. Deep learning in neural networks: an overview. Neural Network Jan. 2015;61:85-117. https://doi.org/10.1016/j.neunet.2014.09.003.
  • [29] He Y, Gu C, Chen Z, Han X. Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis. Int J Prod Res Oct. 2017;55(19):5841-62. https://doi.org/10.1080/00207543.2017.1346843.
  • [30] Sullivan GP, Pugh R, Melendez AP, Hunt WD. Operations & maintenance best practices: guide to achieving operational efficiency. 2010
  • [Online]. Available: https://www.energy.gov/sites/prod/files/2013/10/f3/omguide_complete.pdf.
  • [31] Tran Anh D, Dąbrowski K, Skrzypek K. The predictive maintenance concept in the maintenance department of the ‘industry 4.0’ production enterprise. Found Manag Dec. 2018;10(1):283-92. https://doi.org/10.2478/fman-2018-0022.
  • [32] Najmi A-H, Sadowsky J. The continuous wavelet transform and variable resolution time - frequency analysis. Johns Hopkins APL Tech Dig 1997;18(1):8.
  • [33] Sinaice BB, Kawamura Y, Kim J, Okada N, Kitahara I, Jang H. Application of deep learning approaches in igneous rock hyperspectral imaging. In: Topal E, editor. Proceedings of the 28th international symposium on mine planning and equipment selection - MPES 2019. Cham: Springer International Publishing; 2020. p. 228-35. https://doi.org/10.1007/978-3-030-33954-8_29.
  • [34] Okada N, Maekawa Y, Owada N, Haga K, Shibayama A, Kawamura Y. Automated identification of mineral types and grain size using hyperspectral imaging and deep learning for mineral processing. Minerals Sep. 2020;10(9):809. https://doi.org/10.3390/min10090809.
  • [35] Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imag Aug. 2018;9(4):611-29. https://doi.org/10.1007/s13244-018-0639-9.
  • [36] Sharma S, Sharma S, Scholar U, Athaiya A. Activation functions in neural networks. Int J Eng Appl Sci Technol 2020;4(12):310-6. ISSN No. 2455-2143.
  • [37] Annual Report 2020.4 - 2021.3. Center for regional revitalization in research and education, akita university
  • [Online]. Available: https://www.akita-u.ac.jp/honbu/social/pdf/r2_nenpou.pdf.
  • [38] Ma L, Ding Y, Wang Z, Wang C, Ma J, Lu C. An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network. Expert Syst Appl Nov. 2021;182:115234. https://doi.org/10.1016/j.eswa.2021.115234.
  • [39] Bui V, Pham TL, Nguyen H, Jang YM. Data augmentation using generative adversarial network for automatic machine fault detection based on vibration signals. Appl Sci Mar. 2021;11(5):2166. https://doi.org/10.3390/app11052166.
  • [40] Pan T, Chen J, Zhang T, Liu S, He S, Lv H. Generative adversarial network in mechanical fault diagnosis under small sample: a systematic review on applications and future perspectives. ISA Trans Sep. 2022;128:1-10. https://doi.org/10.1016/j.isatra.2021.11.040.
  • [41] Zhao B, Yuan Q. Improved generative adversarial network for vibration-based fault diagnosis with imbalanced data. Measurement Feb. 2021;169:108522. https://doi.org/10.1016/j.measurement.2020.108522.
  • [42] Guo Q, Li Y, Song Y, Wang D, Chen W. Intelligent Fault diagnosis method based on full 1-D convolutional generative adversarial network. IEEE Trans Ind Inf Mar. 2020;16(3):2044-53. https://doi.org/10.1109/TII.2019.2934901.
  • [43] Song Y, Li Y, Jia L, Qiu M. Retraining strategy-based domain adaption network for intelligent fault diagnosis. IEEE Trans Ind Inf Sep. 2020;16(9):6163-71. https://doi.org/10.1109/TII.2019.2950667.
  • [44] Xia M, Li T, Shu T, Wan J, de Silva CW, Wang Z. A two-stage approach for the remaining useful life prediction of bearings using deep neural networks. IEEE Trans Ind Inf Jun. 2019;15(6):3703-11. https://doi.org/10.1109/TII.2018.2868687.
  • [45] Ren L, Sun Y, Cui J, Zhang L. Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. J Manuf Syst Jul. 2018;48:71-7. https://doi.org/10.1016/j.jmsy.2018.04.008.
  • [46] Li X, Zhang W, Ding Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction. Reliab Eng Syst Saf Feb. 2019;182:208-18. https://doi.org/10.1016/j.ress.2018.11.011.
  • [47] Mao W, He J, Tang J, Li Y. Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network. Adv Mech Eng Dec. 2018;10(12). https://doi.org/10.1177/1687814018817184.168781401881718.
  • [48] Nie L, Zhang L, Xu S, Cai W, Yang H. Remaining useful life prediction for rolling bearings based on similarity feature fusion and convolutional neural network. J Braz Soc Mech Sci Eng Aug. 2022;44(8):328. https://doi.org/10.1007/s40430-022-03638-0.
  • [49] Yang J, Peng Y, Xie J, Wang P. Remaining useful life pre- diction method for bearings based on LSTM with uncertainty quantification. Sensors Jun. 2022;22(12):4549. https://doi.org/10.3390/s22124549.
  • [50] Ge Y, Liu JJ, Ma JX. Remaining useful life prediction using deep multi-scale convolution neural networks. IOP Conf Ser Mater Sci Eng Jan. 2021;1043(3):32011. https://doi.org/10.1088/1757-899X/1043/3/032011.
  • [51] Wang C, Jiang W, Yang X, Zhang S. RUL prediction of rolling bearings based on a DCAE and CNN. Appl Sci Dec. 2021;11(23):11516. https://doi.org/10.3390/app112311516.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-253bacc2-9a9d-43cd-822c-3d908f4bf26d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.