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Abstract

In mining, super-large machines such as rope excavators are used to perform the main mining operations. A rope
excavator is equipped with motors that drive mechanisms. Motors are easily damaged as a result of harsh mining
conditions. Bearings are important parts in a motor; bearing failure accounts for approximately half of all motor failures.
Failure reduces work efficiency and increases maintenance costs. In practice, reactive, preventive, and predictive
maintenance are used to minimize failures. Predictive maintenance can prevent failures and is more effective than other
maintenance. For effective predictive maintenance, a good diagnosis is required to accurately determine motor-bearing
health. In this study, vibration-based diagnosis and a one-dimensional convolutional neural network (1-D CNN) were
used to evaluate bearing deterioration levels. The system allows for early diagnosis of bearing failures. Normal and
failure-bearing vibrations were measured. Spectral and wavelet analyses were performed to determine the normal and
failure vibration features. The measured signals were used to generate new data to represent bearing deterioration in
increments of 10%. A reliable diagnosis system was proposed. The proposed system could determine bearing health
deterioration at eleven levels with considerable accuracy. Moreover, a new data mixing method was applied.

Keywords: bearing diagnosis, electric motor, vibration analysis, signal processing, 1-D CNN

1. Introduction

D ifferent types of excavators are used in mining,
including shovels, draglines, and hydraulic

excavators. They are equipped with motors to oper-
ate hoists, swings, crowds, and propelling mecha-
nisms. This study considers the bearing diagnostic of
the electric motor in the crowd mechanism of the
mining shovel in the Baganuur mine (EKG-5a). The
Baganuur mine was established in 1978 and is one of
the largest coal suppliers for Mongolian power
plants [1]. A strip mining method is used in the mine.
The mine contains brown coal and has an area of
31.6 km2 [1]. The EKG-5a excavator is the primary
machinery used for coal excavation.
Electric motors are an important component of

rope shovels and are often damaged in harsh

mining environments. Failures can occur in the
shaft coupling, rotor winding, stator winding, and
bearings. Over 40% of total motor failures are
related to the bearings [2e6]. One study reported
that bearing failure accounts for 51% of overall
motor failure [7]. Different types of bearing failure
can occur, including inner ring faults, outer ring
faults, ball faults, and deterioration. The main
causes of motor bearing failure are insufficient or
excessive lubrication, overheating, long-term oper-
ation, overload, greasing type, incorrect installation,
pollution of bearing lubrication, and working con-
ditions. Pollution of the lubrication material leads to
rapid deterioration of the bearing and reduces the
factory-normalized lifetime of the bearing. If ma-
chines continue to operate with failed bearings, the
work efficiency decreases, and failure is transmitted
to other joint parts, producing other machine faults.
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Thus, bearing failures must be detected quickly.
Vibration measurement is commonly used to
diagnose the health of rotating machines such as
motors, rotors, gearboxes, drill bits, and bearings
[6,8e27]. Researchers have used vibration diagnosis
to detect bearing faults [6,8e22]. Most have focused
on the inner ring, outer ring, and ball faults in motor
bearings [6,8e11,13e22]. One study [12] examined
four levels of bearing health monitoring (healthy,
early fault, moderate fault, and severe fault) based
on vibration diagnostics. In practice, considerable
bearing deterioration occurs, requiring more accu-
rate monitoring. Hence, eleven levels of motor-
bearing health deterioration were considered in this
study, which is deemed sufficient for an in-depth
analysis of bearing failure.
In the past two decades, the development of infor-

mation and communication technology (ICT) has
been a global trend. Deep learning, a sector of ma-
chine learning, has been developed since 1991 [28].
Some industrial sectors are using deep learning to
reduce costs and increase productivity. Many
researchers have used deep neural networks
and vibration data from rotating machines;
more than half of them used a CNN model
[6,9,11,12,14e19,21,22,24e27]. In a study [15]
comparing CNNs against other deep learning
models, it was further concluded that CNNs are
better than other deep learning models. This advan-
tage stems from its compact structural architecture,
cost-efficiency and practicality (real-time hardware
implementation). Hence, the CNN output was
greater than other models in the study. In another
paper [16], CNNs were favoured for their low
computational load and lower risk of overfitting,
which greatly improves the accuracy and efficiency of
pattern recognition. Furthermore, the 1-D CNN
possess the highest accuracy (99.9%) compared with
LSTM (Long-Short Term Memory), Support Vector
Machine (SVM), k-Nearest Neighbors (kNN),
Multilayer Perceptron (MLP) and Random Forest in
their study of vibration-based bearing fault recogni-
tion. Therefore, it can be said that CNNs are consid-
erably effective for data classification, and can be
used in one-dimensional (1-D), two-dimensional (2-
D), and three-dimensional (3-D) forms. In a study by
Wang et al. [17], outputs from 1-D and 2-D CNNs
have been compared in bearing fault diagnosis; with
the 1-D CNN outputting better results. For these
reasons, a 1-D CNN deep learning algorithm is used
to diagnose bearing health deterioration in our study.
In one study, a 1-D CNN was used to classify drill

bit failure based on the acceleration waveform [27];
in another study, a deep neural network was used to

distinguish bearing and gearbox failure based on
vibration and acoustic data [10].
In practice, machine health monitoring, particu-

larly bearing and gearbox diagnosis systems based
on vibration and machine learning, are faced with
a lack of training data. To solve this problem,
a plethora of research works [38e42] have employed
various kinds of generative adversarial networks
(GANs). In these studies, random noise, standard
noise and/or fake samples (distributed noise) were
used to generate data. More precisely, studies by
Zhao et al. [41] and Guo et al. [42] proposed GANs
to generate data for the evaluation of inner ring,
outer ring and rolling element fault. Hence, this
research differs from the previously stated works
[38e42] in that it takes into consideration the
bearing deterioration in the generation of new data.
Research by Song et al. [43] considered a retrain-

ing strategy based domain adaption network
(DAN-R) on bearing fault diagnosis. DAN is usually
applied to reduce the disparity between features of
various domains. The aim of this research is thus to
make clear differences between neighbor classes.
Therefore, traditional CNNs are best suited for this
task.
Many studies [44e51] have been undertaken to

accurately estimate bearing health as a means to
determine the remaining viability of such bearings
using CNNs, artificial neural networks (ANNs) and
deep neural networks (DNNs). Based on measured
monitoring data, these studies demonstrated the
great capabilities of these systems by employing
techniques such as autoencoders, multiscale feature
extraction, long-short term memory (LSTM) and
health indicators (HI). On the other hand, this study
differs from the above mentioned as it employs
a new data generation feature-extraction method
coupled with a CNN.
Bearing failure detection experiments were per-

formed in a laboratory in some studies; typically,
low-power motors were used in the experiments
[8,11,15,16,18,19,21,26]. To properly estimate bearing
deterioration, data should be collected from an
actual system.
In practice, three maintenance strategies are

generally used to mitigate failures: reactive,
preventive, and predictive maintenance [29,30].
Reactive strategies are considered outdated as they
entail repairing machines after a failure occurs. This
method has disadvantages, such as high repair costs
and significant machine productivity losses. Pre-
ventive maintenance is typically used to decrease
economic losses [29,31] and is a better economic
indicator than reactive maintenance, although it
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increases repair costs. In recent years, predictive
maintenance has emerged; it is the most effective
maintenance method for estimating remaining
useful life (RUL) and decreasing the economic
losses of machines [30,31]. In a report by the US
Office of Energy Efficiency and Renewable Energy,
good results were achieved when predictive main-
tenance was used instead of reactive maintenance.
Return on investment was tenfold; maintenance
costs were reduced by 25e30%; breakdowns were
reduced by 70e75%; downtime was reduced by
35e45%, and machine productivity was increased
from 20% to 25% [30]. Researchers reported an
economic improvement of 26.02% when predictive
maintenance was used instead of preventive main-
tenance [29]. Predictive maintenance is performed
on the basis of good diagnostics.
The purpose of this study is to reduce economic

losses and increase the productivity of mining
excavators. A predictive maintenance method must
be used in the mining sector. A CNN and vibration-
based bearing-health monitoring can satisfy these

requirements. To this end, vibration data should be
measured at an actual site. The CNN must correctly
assess the motor bearing health deterioration to
determine the RUL of the bearing. However, in an
actual system, only normal and failed data can be
clearly measured; bearing health deterioration is
uncertain. Thus, new data must be generated based
on the measured data to represent motor bearing
health deterioration levels more accurately. For this
purpose, a new data generation (mixing) method
was applied in this investigation.
The CNN and vibration-based monitoring system

for bearing health allow rapid and reliable detection
of bearingdeteriorationwithout human intervention.

2. System design

The research object is the electric motor bearing of
the EKG-5a mining excavator. The motor is model
4GPEM 55-2/1U2 (4GПЭМ 55-2/1У2) and is used in
the EKG-5a mining excavator as a generator for the
crowd mechanism. The bearing model is USSR-3-
18GPZ-314 (USSR-3-18GПЗ-314), produced in the
Russian Federation. The EKG-5a excavator used in
the Baganuur mine is shown in Fig. 1. Our research
process is shown in Fig. 2.
This study consists of three main parts: data

collection, signal analysis (spectral analysis), and
CNN training. Some additional areas of study related
to the bearing health monitoring requirements were
necessary. Figure 2 shows a simplified research
overview. However, the purpose of this research is to
evaluate bearingdeterioration levels accurately using
CNNs in order to implement predictivemaintenance.
Therefore, detailed analytical methods of the

Fig. 1. EKG-5a excavator.

Fig. 2. Research process [37].
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research are introduced in Fig. 3, which consists of
nine explicitly described parts. Normal and failure
vibrations of motor bearings are measured, and this
stage is called data collection (1). Fast Fourier Trans-
formation (FFT) (2) analyzes are done on the
measured vibrations to discover failure frequency (3).
After FFT, the features of bearing failure are extrac-
ted. Continuous Wavelet Transform (CWT) is
performed after FFT to confirm the results of FFT (4).
A “CNN with 2 classifications” (CNN 2) is trained
using measured vibrations (5). Data mixing/genera-
tion is performed based on discovered failure
frequency of bearings using measured vibrations
(Normal and Failure) to accurately evaluate bearing
deterioration levels (6). Mixed data should represent
bearing deterioration from normal to failure in in-
crements of 10%, which consists of eleven data levels
(Normal, 10% Failure, 20% Failure, 30% Failure, 40%
Failure, 50% Failure, 60% Failure, 70% Failure, 80%
Failure, 90% Failure, and total Failure) (7).
A “CNN with 11 classifications” (CNN 11) is

trained using eleven levels of data (8). Conse-
quently, bearing deterioration can be evaluated at
10% increments. In practice, technical and economic
requirements are assessed, and these include price,
simplicity in application and compactness of
equipment used in diagnostic systems of machines.
Hence, a trained “CNN with 2 classifications”
should be applied instead of the “CNN model with
11 classifications” (9). Based on these considerations,
the “CNN with 2 classifications” is used to evaluate
the RUL of bearings using eleven data classes.
Therefore, this system should be inspected for being
able to use in practice.

2.1. Experimental setup

Data were collected from a maintenance facility in
the Baganuur mine. The data collection process is

shown in Fig. 4. A TEAC piezoelectric acceleration
sensor and a Keyence NR-500 data logger were used
for data collection.
An accelerometer was mounted on the bearing

house of the motor, as shown in Fig. 4. The accel-
erometer was connected to a channel of the data
logger. The bearing failure vibrations were collected
using a deteriorated bearing. The deteriorated
bearing was replaced with a new bearing, and the
vibrations of the normal bearing were collected. The
experimental specifications and setup are presented
in Table 1.
Figures 5 and 6 show a normal bearing structure

and a deteriorated bearing.
The working conditions cause the rolling elements

of the bearing to deteriorate, resulting in excessive
vibration. The deterioration is shown in Fig. 6.

Fig. 3. Flow chart of analytical methods.

Fig. 4. Data collection at mine site [37].

Table 1. Data collection specifications [37].

Specification Unit Value

Sampling frequency kHz 100
Sampling period ms (microsecond) 10
Sampling duration s 60
Sampling count e 60 (Normal 30,

Failure 30)
Motor rotation speed rpm 1200
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2.2. Waveform

The measured vibrations are shown in Fig. 7.
The waveforms in Fig. 7 are similar, except at

times in amplitude; it is difficult to distinguish the
difference between them. Thus, other signal pro-
cessing techniques are required.

2.3. Frequency analysis

2.3.1. Fast Fourier Transform
In practice, every movement causes vibrations,

and all vibrations are combined. This makes it
difficult to distinguish which part(s) of vibrations
were generated by bearing failure. Also, an accel-
erometer collects combined vibrations. Hence, the
Fast Fourier Transform (FFT) is usually used for
frequency analysis to allow the critical frequency to
be easily distinguished. Time-domain data are
converted into the frequency domain using FFT,
also known as spectral analysis. The dominant

frequencies of the vibration data can be easily
determined, confirming the difference between
normal and failure-bearing conditions. FFT analysis
was used to examine the normal and failure data of
bearing, as shown in Fig. 8.
After FFT analysis in Fig. 8, the dominant

frequency range of bearing failure was observed
between 400 and 450Hz, which is failure frequency,
as indicated in the red box. If the bearing failure
level increases, the amplitude of failure vibration is
elevated when speed is constant. In this case, the
motor speed was constant at 1200 rpm when vibra-
tion measurements were performed. Therefore,
motor bearing failure amplitudes of vibrations
increased linearly in a frequency range between 400
and 450 Hz. Another frequency range from 800 to
1100 Hz was shifted to the left (indicated by the blue
box). Using FFT, the difference between normal and
failure is made clear, hence, the development of an
automatic diagnostic system is made possible.

2.3.2. Wavelet analysis
In FFT analysis, time information is lost, and the

data are visualized as the amplitude of the sine or
cosine functions. Thus, wavelet analysis is required
for signal processing. Wavelet analysis simulta-
neously provides time, frequency, and amplitude
information, and is sometimes referred to as time-
frequency analysis. A continuous wavelet transform
(CWT) was used to analyze the data. The CWT
equation is presented in Eq. (1) [32].

Wða;bÞ¼
Z∞

�∞

1ffiffiffi
a

p sðtÞj
�
t� b
a

�
dt ð1Þ

where a is the time interval corresponding to the
bandpass filter (a> 0); b is the translation of the
wavelet and provides for time localization; t is time;
jðtÞ is the mother function; sðtÞ is the signal; Wða; bÞ
is the continuous wavelet transform.
The wavelet analysis results are shown in Fig. 9,

which shows the normal and failure conditions for
bearing health.
The motor speed was 1200 rpm during the

experiments; 0.05 s represents one rotation of the
motor. Different wavelet types, including MexHat,
Morlet, and DGauss can be used in wavelet anal-
ysis. The MexHat (Mexican hat) wavelet was used
in our analysis; it is a commonly used wavelet type
and is a smooth continuous function. The vertical
axis represents the frequency (Hz), and the hori-
zontal axis represents time (s), as shown in Fig. 9.
The amplitude of the acceleration corresponding to
the frequency is expressed by the color brightness.

Fig. 5. Motor bearing structure [37].

Fig. 6. Bearing failure (deterioration) [37].
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A light color indicates a large amplitude; a dark
color indicates a small amplitude. CWT allows for
the confirmation of FFT and the determination of
critical frequencies belonging to specific time
zones. Figure 9 shows that the bearing failure am-
plitudes (B. Failure) were higher than normal (A.
Failure) at a frequency range between 400 and
450 Hz, except for time zones between 0.036 and
0.039 s. By way of explanation, bearing deteriora-
tion generates high amplitude vibrations per one
rotation of the motor.

3. Convolutional neural network

Convolutional neural networks (CNNs) are
powerful artificial neural networks suitable for
classification. They have provided excellent results
in image and speech recognition and have been
used by researchers [33,34]. A CNN consists of

many neural network layers, including input,
convolution, batch normalization, max pooling,
dropout, fully connected, and SoftMax layers. These
layers determine the input data features used for
classification.
The convolution layer is a fundamental CNN

component used for feature extraction [35]. It is
usually joined with a pooling layer and an activation
function. A pooling layer is commonly used after the
convolution layer for matrix dimension reduction
and data feature extraction [14]. Different types of
pooling layers, such as max pooling and mean
pooling layers, are used in CNNs; max-pooling
layers are the most common [14,35]. Activation
functions, including sigmoid, tanh, ReLU, Leaky
ReLU, Parametrized ReLU, ELU, Swish, and Soft-
Max, are used in artificial neural networks as binary
step functions [36], which must be nonlinear. ReLU
is most commonly used.

Fig. 7. Bearing vibration waveforms.

Fig. 8. FFT analysis results.
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After the convolutional layer, max pooling layer,
and activation function are worked several times,
the data usually shift to one or more fully connected
layers [14,33,34]. A fully connected layer is a one-
dimensional array of numbers used for classification
and is connected to all outputs [35]. Before classifi-
cation, the data pass through the SoftMax layer to
convert probability numbers into prediction
numbers.
In our research, the bearing failure in an excavator

motor was classified using a 1-D CNN; the time
waveform was chosen as the input data. The CNN
model structure is shown in Fig. 10.
Our CNN model consists of an input layer, two

convolutional combinations (convolution, batch

normalization, and ReLU), two max-pooling
layers, three fully connected layers, a dropout
layer, a SoftMax layer and a classification output.
The layer types and specifications are presented
in Table 2.

4. CNN results

In this study, the measured data were classified
into normal and failure categories. Time-domain
data were used for CNN training. The learning
curve for the CNN is shown in Fig. 11. A total of
24,000 data points were used for CNN training; each
data point represented one rotation of the motor.
Ninety percent of the data was used for training and
validation; 10% was used for testing.

Fig. 9. Wavelet analysis results.
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Fig. 10. Structure of 1-D CNN model for bearing failure prediction.

Table 2. Layers of 1-D CNN model for bearing failure prediction.

Layer name Specification

Image input 1� 5000� 1 images with “zerocenter” normalization
Convolution 100 1� 1024� 1 convolutions with stride [22] and padding [0 0 0 0]
Batch normalization Batch normalization with 100 channels
ReLU ReLU
Max pooling 1� 9 max pooling with stride [22] and padding [0 0 0 0]
Convolution 100 1� 256� 100 convolutions with stride [11] and padding [0 0 0 0]
Batch normalization Batch normalization with 100 channels
ReLU ReLU
Max pooling 1� 9 max pooling with stride [22] and padding [0 0 0 0]
Fully connected 500 fully connected layers
Dropout 50% dropout
Fully connected 250 fully connected layers
Fully connected 2 fully connected layers in “CNN with 2 classifications”

(eleven fully connected layers in “CNN with 11 classifications”)
SoftMax SoftMax
Classification output Crossentropyex with classes “A (Normal)” and “B

(Failure)” in the “CNN with 2 classifications”
(A (Normal), B (Failure-10%), C (Failure-20%), D (Failure-30%),
E (Failure-40%), F (Failure-50%), G (Failure-60%), H (Failure-70%),
I (Failure-80%), J (Failure-90%), K (Failure) in “CNN with 11 classifications”)

Fig. 11. Learning curve for “CNN with 2 classifications” [37].
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In Fig. 11, the validation accuracy of CNN learning
was evaluated as 100%. The CNN learning specifi-
cations are presented in Table 3.
Figure 12 shows the bearing health classification

test accuracy results, known as a confusion matrix,
showing predictions of randomly selected data (10%
of total data). Randomly selected bearing data were
classified into normal and failure categories.

The horizontal axis shows the actual bearing
condition, and the vertical axis shows the test results
of the trained CNN model. The test verifies the
model training process. The diagonal of the matrix
expresses the test accuracy of the trained “CNN
with 2 classifications”, visualized in green. In Fig. 12,
the test accuracy is 100%. The confusion matrix
result presents the CNN model prediction accuracy;
the CNN can accurately assess the bearing health
conditions.

Table 3. Learning specifications of “CNN with 2 classifications”.

Epoch Iteration Time elapsed
(hh:mm:ss)

Mini-batch
accuracy

Validation
accuracy

Mini-batch
loss

Validation
loss

Base
learning rate

1 1 00:18:55 43.50% 50.00% 3.4946 7.9712 0.0010
2 150 00:32:13 100.00% 99.98% 1.9014e-07 0.0013 0.0010
3 250 00:40:34 100.00% 99.98% 2.4438e-07 0.0011 0.0010
4 300 00:44:45 100.00% 100.00% 8.8397e-07 2.6324e-06 0.0010
5 400 00:53:04 100.00% 100.00% 1.3292e-06 1.5160e-06 0.0010
6 500 01:01:22 100.00% 100.00% 2.3945e-06 1.4980e-06 0.0010
7 600 01:09:41 100.00% 100.00% 8.2674e-07 1.5154e-06 0.0010
8 650 01:13:57 100.00% 100.00% 1.4273e-05 1.5173e-06 0.0010
9 750 01:22:17 100.00% 100.00% 1.4842e-07 1.0371e-06 0.0010
10 860 01:32:10 100.00% 100.00% 1.8954e-07 1.0105e-06 0.0010

Fig. 12. Confusion matrix for “CNN with 2 classifications” [37].

Fig. 13. Structure of data generation method.

Fig. 14. 50% failure waveform.
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In practice, the bearing health deterioration rate
must be determined clearly and in detail to imple-
ment predictive maintenance. Normal and failure
data alone are insufficient in determining the level
of bearing health deterioration. New data must be
created to represent different levels of motor-
bearing health deterioration.

5. Verification of proposed system

New data generation is essential to create an ac-
curate CNN model to assess bearing failure. New
data were generated to represent motor-bearing

health deterioration levels in increments of 10%.
After creating these data, a new CNN model was
trained to determine the motor-bearing health more
accurately. The RUL of the bearing can be easily
determined using the new CNN model. Data
generation requires several signal processing tech-
niques, including FFT, Inverse Fast Fourier Trans-
form (IFFT), and combinations of both.

5.1. Test waveform preparation for verification

As previously observed, when bearing failure
increases, the amplitude of the vibration is elevated

Fig. 15. FFT analysis results for all data.
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linearly in the same frequency range between 400
and 450 Hz. Therefore, bearing deterioration level
amplitudes increase from normal to failure in this
range. In order to generate data, the following ac-
tions are performed. Measured vibrations (normal
and failure) should be converted to the frequency
domain using FFT, and consequently, data is
extracted for each frequency. Thereafter, one
dataset is added to another to generate mixed data.
In this case, normal should be added on failure.
Before these actions, the normal and failure data
should be multiplied by the mixing coefficient. The
mixing coefficient can be from 0 to 1. For example,
to generate 50% failure data, normal and failure
data should be multiplied by 0.5, respectively. Or,
to generate 40% failure data, normal should be
multiplied by 0.6, and failure multiplied by 0.4.
Thus, the data generating (mixing) process is per-
formed until all necessary data has been generated.
Also, data must be converted to complex numbers
when using FFT. The real part of the normal data is
added to the real part of the failure data. This ac-
tion is repeated for the imaginary parts of the data.
The generation is performed according to the
schema named as the structure of the data gener-
ation new method (data mixing method), which is
shown in Fig. 13, where km is the mixing coefficient.
After that, the summed real and imaginary
numbers were converted into time-domain data
using IFFT to produce mixed data.

5.2. Inverse Fast Fourier Transform

Before generating new data, the frequency-
domain data is converted to time-domain data using
the Inverse Fast Fourier Transform (IFFT), particu-
larly for the data mixing processes. IFFT is also an
important technique for signal processing.

5.3. Generated waveform and verification

New data was created (mixed) from the normal
and failure motor bearing data using the novel data
generation method. The generated eleven levels of
motor-bearing health deterioration data express
gradual bearing health deterioration from normal to
failure in increments of 10%. Figure 14 shows the
50% failure waveform, which is representative of all
generated data.
The time-domain waveforms of the generated

data were similar, as shown in Figs. 7 and 14. It was
difficult to distinguish their differences. FFT analysis
was performed on these data. The results for all data
are plotted in Fig. 15; the differences are easily
distinguished.
From FFT analysis, the dominant frequencies of

motor bearing failurewere determined to bebetween
400 Hz and 450Hz, as shown in Fig. 15. In this region,
the vibration amplitude of bearing failure gradually
increases linearly, confirming that the data were
correctly generated. The area indicated by the red
arrow is enlarged to clearly show the linear increase.
The frequency band from 800 to 1100 Hz is gradually
shifting to the left, as shown in Fig. 15.
The data (generated andmeasured) were classified

into 11 categories: normal, 10% failure, 20% failure,
30% failure, 40% failure, 50% failure, 60% failure, 70%
failure, 80% failure, 90% failure and total failure.
A total of 132,000 data points were used for CNN
learning, each representing one rotation of themotor;
each category contained 12,000 data points.
The learning curve for the “CNN with 11 classifi-

cations” is shown in Fig. 16. The CNN learning was
complicated owing to a large amount of data and little
difference between the data in the 11 categories.
Thus, themaximumepochnumber forCNN learning
was increased to 35. The maximum epoch number

Fig. 16. Learning curve for “CNN with 11 classifications”.
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Fig. 17. Confusion matrix for “CNN with 11 classifications”.

Table 4. Learning specifications of “CNN with 11 classifications”.

Epoch Iteration Time elapsed
(hh:mm:ss)

Mini-batch
accuracy

Validation
accuracy

Mini-batch
loss

Validation
loss

Base
learning rate

1 1 00:19:05 6.50% 9.09% 6.9368 13.7760 0.0010
5 2350 06:45:12 84.00% 74.42% 0.5057 0.7599 0.0010
10 4750 13:18:14 87.00% 84.15% 0.4277 0.4696 0.0010
15 7100 19:32:52 89.00% 87.41% 0.2690 0.3405 0.0010
20 9500 25:59:22 94.00% 87.49% 0.2415 0.3654 0.0010
25 11850 32:18:46 94.50% 92.50% 0.1605 0.2118 0.0010
30 14250 38:49:00 93.00% 90.71% 0.2229 0.2850 0.0010
35 16625 45:17:50 94.50% 91.68% 0.1965 0.2750 0.0010
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was 10 for training the “CNN with 2 classifications”,
as shown in Fig. 11. The validation accuracy reached
93.21%. The last learning process requiredmore time
than the “CNN with 2 classifications”. The CNN
learning specifications are presented in Table 4.
In Table 4, only a few max epoch numbers are

presented for a clear description and to save page
space. Figure 17 shows the test accuracy results for
the “CNN with 11 classifications” in a confusion
matrix and the predictions of randomly selected
data (10% of total data). All randomly selected data
were classified into 11 categories.
In Fig. 17, the overall test accuracy is 92.9%. The

prediction (test) accuracy is over 90% for all cate-
gories except failure-10% and failure-20%, visual-
ized diagonally in green. There were a total of 13,200
test data points; each category contained 9.09% of
the total test data. If the CNN model prediction is
assumed to have 100% accuracy, the predicted
number for each category must be 1200. The test
accuracy for the “CNN with 11 classifications” is
92.9%, which is an acceptable result. The confusion
matrix result shows that the “CNN with 11 classifi-
cations” can assess bearing health deterioration
levels with good accuracy. The “CNN with 11 clas-
sifications” confirms that data generation, FFT, and
wavelet analysis were performed properly. As
almost all of the data were predicted correctly, each
category expresses unique features. Nearly all
falsely predicted datasets were classified as
neighbor categories, such as the 266 data values
belonging to “Failure-10%” data misclassified as
“Normal”, 4 “Failure-10%” data as “Failure-20%“,
265 “Failure-20%” data as “Failure-10%“, 11 “Fail-
ure-20%” data as “Failure-30%“, etc. This shows that
neighbor categories have similar features, which in
turn expresses the degree of the practicality of these
generated datasets. Hence, all falsely classified data

is located near the green diagonal of Fig. 17 confu-
sion matrix.

5.4. Real-time bearing health monitoring

In an actual system, machine health monitoring
requirements are imposed, including good di-
agnostics, inexpensive apparatus, simple operation,
and low technical requirements. To satisfy these
requirements, the machine monitoring system
should be simple. Thus the “CNN with 2 classifica-
tions” was used instead of the “CNN with 11 clas-
sifications”. The “CNN with 11 classifications” has
high technical requirements that make it difficult to
use in actual conditions. The price of diagnostic
systems has also increased. For this reason, the
“CNN with two classifications” was checked using
all data (generated and measured) to represent
motor bearing health deterioration levels in 10%
increments.
To check the “CNN with 2 classifications”, one-

wave data collection was created, which is the unity
of data that expresses 10% bearing health deterio-
ration levels. The results of the one-wave data
wavelet analysis determined whether the data
collection was correct, as shown in Fig. 18.
The vibration amplitude in the dominant fre-

quency band from 400 to 450 Hz gradually
increased. The dark color represents low amplitude,
and the light color represents high amplitude. The
graph shows that the bearing vibration was normal
at the initial time; the bearing vibration increased
gradually until failure occurred, indicating that the
one-wave data were created correctly.
The checking result for the simple CNN model is

shown in Fig. 19.
Figure 19 shows how the simple bearing health

monitoring system works. The simple CNN (CNN

Fig. 18. Wavelet analysis of real-time bearing health deterioration.
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with 2 classifications) model can predict the bearing
health deterioration levels in a general manner.
A simple CNN model has two indicators of bearing
health, normal and failure. The normal indicator on
the vertical axis in Fig. 19 represents the average
CNN prediction number; the horizontal axes
represent the bearing health levels. When the sim-
ple CNN model is used for actual systems, the
bearing health deterioration levels are predicted, as
shown in Fig. 19. The simple CNN model can pre-
dict bearing health with sufficient accuracy; hence
the RUL of the bearing would be determined using
this model.

6. Conclusions

In this study, a vibration-based early diagnostic
system using a CNN was proposed for mining
excavator motor bearings. In the past, motor bearing
failures were detected by experienced operators
based on vibration. The diagnosis was not reliable
due to human error. This study was conducted as
a solution to this problem.
Two CNNs were trained in this study: a “CNN

with 2 classifications” and a “CNN with 11 classifi-
cations”. The prediction accuracy of the “CNN with
2 classifications” was 100%. FFT and wavelet anal-
ysis were performed; the dominant frequency range
of bearing failure was determined to be from 400 to
450 Hz.
New data were generated to estimate the RUL of

the bearing and observe its health deterioration.
The generated (mixed) data represent bearing
health deterioration increasing gradually in in-
crements of 10%. All data (generated and
measured) were used to train a new “CNN model
with 11 classifications”. The “CNN with 11

classifications” was successfully trained; the pre-
diction accuracy was 92.9%.
A real-time bearing health monitoring graphic

was obtained using one-wave data and the “CNN
with 2 classifications”. One-wave data were created
based on all the data to represent the bearing health
deterioration in increments of 10%. This monitoring
system has advantages, including reduced diag-
nostic system cost, low technical requirements, and
simple implementation.
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