PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An extended 3D limit analysis of slope stability considering prestressed anchor cables reinforcement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Prestressed anchor cables have been extensively utilized in slope reinforcement engineering. Combining limit analysis with the strength reduction method (SRM), this article presents a new method to assess the three-dimensional (3D) stability of slopes with prestressed anchor cables. Compared with traditional methods, the factor of safety (FS) calculation method is modified by considering prestressed anchor cable reinforcement by applying a horn-like shape 3D rotational failure mechanism. To validate the proposed method, comparisons between unreinforced slopes and those reinforced with a row of anchor cables are carried out using optimization algorithms and procedures. The minimum width-to-height (B/H) ratio for which the slope can be analyzed using two-dimensional (2D) analysis under different FS calculation accuracies is obtained. To evaluate the consequences of the model parameters, parametric analysis is performed, assessing the FS sensitivity, 3D effects, anchor cable axial force, anchor position, anchor orientation, slope angle, internal friction angle, and cohesion on slope stability. Additionally, slope stabilities under the reinforcement of a row and multiple rows of anchor cables are compared and analyzed. The proposed approach can guide the design and evaluation of slope reinforcement with prestressed anchor cables.
Rocznik
Strony
art. no. e59, 2023
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • Xi’an University of Architecture and Technology, Xi’an 710055, China
Bibliografia
  • 1. Cai F, Ugai K. Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM. Int J Numer Anal Meth Geomech. 2003;27(7):549-64. https://doi.org/10.1002/nag.284.
  • 2. Li J, Chen SX, Yu F, et al. Reinforcement mechanism and optimisation of reinforcement approach of a high and steep slope using prestressed anchor cables. Appl Sci-Basel. 2020;10(1):23. https://doi.org/10.3390/app10010266. (Article 266).
  • 3. Zhang T, Zheng H, Sun C. Global method for stability analysis of anchored slopes. Int J Numer Anal Meth Geomech. 2019;43(1):124-37. https://doi.org/10.1002/nag.2856.
  • 4. Azarafza M, Akgun H, Ghazifard A, et al. Discontinuous rock slope stability analysis by limit equilibrium approaches-a review. Int J Digital Earth. 2021;14(12):1918-41. https://doi.org/10.1080/17538947.2021.1988163.
  • 5. Griffiths DV, Lane PA. Slope stability analysis by finite elements. Geotechnique. 1999;49(3):387-403. https://doi.org/10.1680/geot.1999.49.3.387.
  • 6. Sloan SW. Geotechnical stability analysis. Geotechnique. 2013;63(7):531-72. https://doi.org/10.1680/geot.12.RL.001.
  • 7. Li N, Guo SF, Yao XC. Further study of stability analysis methods of high rock slopes. Rock Soil Mech. 2018;39(2):397-406. https://doi.org/10.16285/j.rsm.2017.1323.
  • 8. Qin CB, Chian SC, Wang CY. Kinematic analysis of pile behavior for improvement of slope stability in fractured and saturated Hoek-Brown rock masses. Int J Numer Anal Meth Geomech. 2017;41(6):803-27. https://doi.org/10.1002/nag.2575.
  • 9. Sysala S, Hrubesova E, Michalec Z, et al. Optimization and variational principles for the shear strength reduction method. Int J Numer Anal Meth Geomech. 2021;45(16):2388-407. https://doi.org/10.1002/nag.3270.
  • 10. Yu HS, Salgado R, Sloan SW, et al. Limit analysis versus limit equilibrium for slope stability. J Geotech Geoenviron Eng. 1998;124(1):1-11. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(1).
  • 11. Michalowski RL, Drescher A. Three-dimensional stability of slopes and excavations. Geotechnique. 2009;59(10):839-50. https://doi.org/10.1680/geot.8.P.136.
  • 12. Michalowski RL, Martel T. Stability charts for 3D failures of steep slopes subjected to seismic excitation. J Geotech Geoenviron Eng. 2011;137(2):183-9. https://doi.org/10.1061/(asce)gt.1943-5606.0000412.
  • 13. Wang L, Sun DA, Yao YP, et al. Kinematic limit analysis of three-dimensional unsaturated soil slopes reinforced with a row of piles. Comput Geotech. 2020;120:16. https://doi.org/10.1016/j.compgeo.2019.103428. (Article 103428).
  • 14. Yang XL, Li ZW. Factor of safety of three-dimensional stepped slopes. Int J Geomech. 2018;18(6):12. https://doi.org/10.1061/(asce)gm.1943-5622.0001154. (04018036).
  • 15. Gao YF, Ye M, Zhang F. Three-dimensional analysis of slopes reinforced with piles. J Cent South Univ. 2015;22(6):2322-7. https://doi.org/10.1007/s11771-015-2757-6.
  • 16. Yang T, Zou JF, Pan QJ. Three-dimensional seismic stability of slopes reinforced by soil nails. Computers Geotech. 2020;127:15. https://doi.org/10.1016/j.compgeo.2020.103768. (Article 103768).
  • 17. Yang XL, Zhang S. Stability analysis of 3D cracked slope reinforced with piles. Computers Geotech. 2020;122:10. https://doi.org/10.1016/j.compgeo.2020.103544. (Article 103544).
  • 18. Wang L, Liu WH, Hu W, et al. Effects of seismic force and pore water pressure on stability of 3D unsaturated hillslopes. Nat Hazards. 2021;105(2):2093-116. https://doi.org/10.1007/s11069-020-04391-0.
  • 19. Zhang F, Gao YF, Wu YX, et al. Effects of vertical seismic acceleration on 3D slope stability. Earthq Eng Eng Vib. 2016;15(3):487-94. https://doi.org/10.1007/s11803-016-0338-9.
  • 20. Wang L, Sun DA, Li L. Three-dimensional stability of compound slope using limit analysis method. Can Geotech J. 2019;56(1):116-25. https://doi.org/10.1139/cgj-2017-0345.
  • 21. Karrech A, Dong X, Elchalakani M, et al. Limit analysis for the seismic stability of three-dimensional rock slopes using the generalized hoek-brown criterion. Int J Mining Sci Tech. 2021;32(2):237-45. https://doi.org/10.1016/j.ijmst.2021.10.005.
  • 22. Yang XL, Long ZX. Seismic and static 3D stability of two-stage rock slope based on Hoek-Brown failure criterion. Can Geotech J. 2016;53(3):551-8. https://doi.org/10.1139/cgj-2015-0147.
  • 23. Yan MJ, Xia YY, Liu TT, et al. Limit analysis under seismic conditions of a slope reinforced with prestressed anchor cables. Comput Geotech. 2019;108:226-33. https://doi.org/10.1016/j.compgeo.2018.12.027.
  • 24. Zhang JW, Li MD, Yi JX, et al. Investigation on the stability of fissured slopes reinforced with anchor cables under seismic action. Math Probl Eng. 2021;2021:14. https://doi.org/10.1155/2021/9262138. (Article 9262138).
  • 25. Li XP, He SM, Wu Y. Limit analysis of the stability of slopes reinforced with anchors. Int J Numer Anal Meth Geomech. 2012;36(17):1898-908. https://doi.org/10.1002/nag.1093.
  • 26. Cavounidis S. On the ratio of factors of safety in slope stability analyses. Geotechnique. 1987;37(2):207-10. https://doi.org/10.1680/geot.1987.37.2.207.
  • 27. Huan MS, Fan XP, Wang HR. Three-dimensional upper bound stability analysis of slopes with weak interlayer based on rotational-translational mechanisms. Eng Geol. 2017;223:82-91. https://doi.org/10.1016/j.enggeo.2017.04.017.
  • 28. Michalowski RL, Park D. Three-dimensional ridge collapse mechanism for narrow soil slopes. Int J Numer Anal Methods Geomech. 2021;45(13):1972-87. https://doi.org/10.1002/ nag.3251.
  • 29. Chen WF. Limit analysis and soil plasticity. New York: Elsevier; 1975.
  • 30. Gao YF, Zhang F, Lei GH, et al. An extended limit analysis of three-dimensional slope stability. Geotechnique. 2013;63(6):518-24. https://doi.org/10.1680/geot.12.T.004.
  • 31. Zhao LH, Luo Q, Li L, et al. Energy analysis method for slopes reinforcing with prestressed anchor cables based on minimum energy principle of instability state. Rock Soil Mech. 2013;34(2):426-32. https://doi.org/10.16285/j.rsm.2013.02.019.
  • 32. Deng DP, Li L, Zhao LH. Stability analysis of slopes reinforced with anchor cables and optimal design of anchor cable parameters. Eur J Environ Civ Eng. 2019;25(13):2425-40. https://doi.org/10.1080/19648189.2019.1631216.
  • 33. Lu KL. 3D effect of homogeneous slope stability analysis based on limit equilibrium method and its application to engineering. Chin J Rock Mech Eng. 2015;34(6):1295. https://doi.org/10.13722/j.cnki.jrme.2014.1751.
  • 34. Yang XL, Wei JJ. Analytical approach for stability of 3D two-stage slope in non-uniform and unsaturated soils. Eng Geol. 2021;292:13. https://doi.org/10.1016/j.enggeo.2021.106243. (Article 106243).
  • 35. Wu K, Shao ZS, Jiang YL, Zhao NN, Qin S, Chu ZF. Determination of stiffness of circumferential yielding lining considering the shotcrete hardening property. Rock Mech Rock Eng. 2023;56:1-14. https://doi.org/10.1007/s00603-022-03122-0.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2536790a-97db-44eb-acfe-7ab9e9064527
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.