PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Production of eco-friendly clay bricks from municipal construction and demolition waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although rapid urbanization has improved the quality of life by enabling the development of infrastructure, and buildings, it has also contributed to a significant increase in construction and demolition waste (CDW). Traditionally, most CDW has ended up in landfills and has not sufficiently valorized, exacerbating environmental degradation. Another repercussion of the building sector is the depletion of non-renewable resources, such as clay, to meet the extensive demands for building materials. Thus, this work proposes an effective solution for valorizing various types of CDW as an alternative raw material to produce valuable fired bricks. This paper evaluates the technological properties of bricks containing concrete waste (CW), ceramic waste (EW), and glass waste (GW). These wastes were analyzed using various techniques, including X-ray diffractometry, X-ray fluorescence, differential thermal analysis, and geotechnical testing. The results showed that incorporating CW into brick bodies notably reduced the density and flexural strength compared to the reference sample, leading to an increase in the rate of capillary water absorption. Therefore, the amount of waste concrete fines added to ceramic materials must be strictly controlled. However, the addition of GW and EW was more beneficial, with adequate water absorption and a significant improvement in flexural strength, reaching 14.9 MPa for marl and 20 MPa for clay. In summary, this research highlighted the possible use of CDW as a sustainable additive for clay bricks, presenting a practical solution to reduce the costs of the construction industry and tackle both environmental and resource-related issues.
Rocznik
Strony
296--308
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Laboratory of Intelligent Systems, Georesources and Renewable Energies, Faculty of Sciences and Technics, Sidi Mohamed Ben Abdellah University, Fez, Morocco
autor
  • Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
  • Departement of Biology-Geology, Graduate Normal School, Sidi Mohammed Ben Abdellah University, Fez, Morocco
autor
  • Higher School of Education and Formation_Oujda, Mohammed Premier University, Oujda, Morocco.
autor
  • LOMC UMR 6294 CNRS, University Le Havre Normandie, 76600 Le Havre, France
  • Laboratory of Intelligent Systems, Georesources and Renewable Energies, Faculty of Sciences and Technics, Sidi Mohamed Ben Abdellah University, Fez, Morocco
Bibliografia
  • 1. Achik M., Hayat B., Abdellah O., Mustapha I., Noureddine El M., Abdelhamid T., Gil G.Á, Francisco G.R, Antonia I.-M, Dolores E-Q, Olga K. 2021. Evaluation of technological properties of fired clay bricks containing pyrrhotite ash. Construction and Building Materials 269: 121312. doi: 10.1016/j.conbuildmat.2020.121312.
  • 2. NM 13.1.008.(1999). Identification test - Determination of Atterberg limits - Roll plasticity limit – Cup liquidity limit.
  • 3. Aouba L., Cécile B., Marie C, Bernard P, Hervé L. 2016. Properties of fired clay bricks with incorporated biomasses: Cases of olive stone flour and wheat straw residues. Construction and Building Materials 102: 7–13. doi:10.1016/j.conbuildmat.2015.10.040.
  • 4. Bauluz, B.M., Mayayo J., Yuste A., Fernandez-Nieto C., Gonzalez Lopez J.M. 2004. TEM Study of Mineral Transformations in Fired Carbonated Clays: Relevance to Brick Making. Clay Minerals 39(3): 333–344. doi:10.1180/0009855043930138.
  • 5. Bonet-Martínez, E., Pérez-Villarejo L, Eliche-Quesada D., Eulogio Castro. 2018. Manufacture of sustainable clay bricks using waste from secondary aluminum recycling as raw material. Materials 11(12). doi:10.3390/ma11122439.
  • 6. Ghita El B., Lechheb M., Ouakarrouch M., Dekayir A., Sahban F.K., Khaldoun A.. 2021. Mineralogical, physico-chemical and technological characterization of clay from Bensmim (Morocco): suitability for building application. Construction and Building Materials 280: 122300. doi: 10.1016/j.conbuildmat.2021.122300.
  • 7. Yongliang Ch., Zhang Y., Chen T., Zhao Y., Bao S. 2011. Preparation of eco-friendly construction bricks from Hematite Tailings. Construction and Building Materials 25(4): 2107–2111. doi:10.1016/j.conbuildmat.2010.11.025.
  • 8. Duc, M. 2020. Les Argiles Dans Le Génie Civil: Pathologies et Propriétés Remarquables.
  • 9. Fadil-Djenabou, S., Désiré Ndjigui P., Mbey J.A. 2015. Mineralogical and physicochemical characterization of Ngaye alluvial clays (Northern Cameroon) and assessment of its suitability in ceramic production. Journal of Asian Ceramic Societies 3(1): 50–58. doi:10.1016/j.jascer.2014.10.008.
  • 10. Fagel, N., Boës X. 2008. Clay-mineral record in Lake Baikal sediments: The holocene and late glacial transition. Palaeogeography, Palaeoclimatology, Palaeoecology 259(2–3): 230–243. doi:10.1016/j.palaeo.2007.10.009.
  • 11. International, Astm. 1996. Standard test method for flexural strength of advanced ceramics at ambient. Order A Journal On The Theory Of Ordered Sets And Its Applications 94(Reapproved):1–15. doi:10.1520/C1161-13.2.
  • 12. Maniatis, Y., Tite M.S. 1981. Technological examination of neolithic-bronze age pottery from central and Southeast Europe and from the Near East. Journal of Archaeological Science 8(1): 59–76. doi:10.1016/0305-4403(81)90012-1.
  • 13. Jean Aimé M., Ngally Sabouang C.J., Beauregard Makon T., Coulibaly S.L., Kong S. 2021. The thermal dehydroxylation of kaolinite using thermogravimetric analysis and controlled rate thermal analysis. Journal of the Cameroon Academy of Sciences 16(3): 235–245. doi: 10.4314/jcas.v16i3.4.
  • 14. Laila M., Banamar A., Akdim M., Jabrane R. 2018. Physical and chemical improvement of clay parameters using doped marl with the pozzolan in Fez Vicnity (Morocco). Present Environment and Sustainable Development 12(1): 283–293. doi: 10.2478/pesd-2018-0022.
  • 15. Gladys M. 2021. Valorisation de Rebuts de Bouteilles En Verre et Des Cendres de Bois Dans La Fabrication de Briques En Argile Cuite Gbènonde Sèna Gladys Milohin To Cite This Version: HAL Id: Tel-02461405 Soutenance et Mis à Disposition de l’ Ensemble de La Contact: D.
  • 16. Sergio Neves M., Fontes Vieira C.M 2014. On the production of fired clay bricks from waste materials: A Critical Update. Construction and Building Materials 68: 599–610. doi: 10.1016/j.conbuildmat.2014.07.006.
  • 17. Boutaina M., Achik M., Benmoussa H., Oulmekki A., Touache A., Noureddine El, M.Ch, Eliche-Quesada D., Kizinievic O., Kizinievic V., Infantes-Aolina A., Guiti F. 2023. Recycling argan nut shell and wheat straw as a porous agent in the production of clay masonry units. 384(March). doi:10.1016/j.conbuildmat.2023.131369.
  • 18. Hicham N., Azdimousa A., El Hammouti K., Haddar A., El Ouahabi M. 2019. Characterization of Neogene marls from the Kert Basin (Northeast Morocco): Suitability for the Ceramics Industry. Clay Minerals 54(4): 379–392. doi: 10.1180/clm.2019.50.
  • 19. Quijorna, N., Coz A., Andres A., Cheeseman Ch. 2012. Recycling of waelz slag and waste foundry sand in red clay bricks. Resources, Conservation and Recycling 65: 1–10. doi: 10.1016/j.resconrec.2012.05.004.
  • 20. Rodriguez-Navarro, C., Cultrone G., Sanchez-Navas A., Sebastian E. 2003. TEM study of mullite growth after muscotive breakdown. American Mineralogist 88(5): 713–724. doi: 10.2138/am-2003-5-601.
  • 21. Standarization European Committee for. 2020. Slovenski Standard Iteh Standard Preview. Slovenski Standard 2(11):21.
  • 22. Yassine T., Benzaazoua M., Mansori M., Hakkou R. 2017. Recycling feasibility of glass wastes and calamine processing tailings in fired bricks making. Waste and Biomass Valorization 8(5): 1479–1489. doi: 10.1007/s12649-016-9657-3.
  • 23. Karfa T., Siméon Kabré T., Blanchart P. 2003. Gehlenite and anorthite crystallisation from kaolinite and calcite mix. Ceramics International 29(4): 377–383. doi: 10.1016/S0272-8842(02)00148-7.
  • 24. Sen W., Gainey L., Ian D.R., Allen Ch.M., Gu Y., Xi Y. 2023. Thermal behaviors of clay minerals as key components and additives for fired brick properties: A Review. Journal of Building Engineering 66.
  • 25. Kai W., Hu Y., Zhang L., Xu L., Yang Z. 2022. Promoting the sustainable fabrication of bricks from municipal sewage sludge through modifying calcination: Microstructure and Performance Characterization. Construction and Building Materials 324(February):126401. doi:10.1016/j.conbuildmat.2022.126401.
  • 26. El Yakoubi, N., M’hamed A., Mohamed O. 2006. Use potentialities of Moroccan clays from the Jbel Kharrou Area in the ceramic industry. Comptes Rendus - Geoscience 338(10): 693–702. doi:10.1016/j.crte.2006.03.017.
  • 27. Chuanmeng Y., Chong C, Qin J., Xiaoyu Cui. 2014. Characteristics of the fired bricks with low-silicon iron tailings. Construction and Building Materials 70: 36–42. doi:10.1016/j.conbuildmat.2014.07.075.
  • 28. Zhang, L. 2013. Production of bricks from waste materials – A review. Construction and Building Materials 47: 643–655. doi: 10.1016/j.conbuildmat.2013.05.043
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25287667-b44e-471e-bd62-c8240bb8d80b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.