PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stabilized model reduction for nonlinear dynamical systems through a contractivity-preserving framework

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work develops a technique for constructing a reduced-order system that not only has low computational complexity, but also maintains the stability of the original nonlinear dynamical system. The proposed framework is designed to preserve the contractivity of the vector field in the original system, which can further guarantee stability preservation, as well as provide an error bound for the approximated equilibrium solution of the resulting reduced system. This technique employs a low-dimensional basis from proper orthogonal decomposition to optimally capture the dominant dynamics of the original system, and modifies the discrete empirical interpolation method by enforcing certain structure for the nonlinear approximation. The efficiency and accuracy of the proposed method are illustrated through numerical tests on a nonlinear reaction diffusion problem.
Rocznik
Strony
615--628
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Department of Mathematics and Statistics, Thammasat University Pathum Thani 12120, Thailand
Bibliografia
  • [1] Aminzare, Z. and Sontag, E.D. (2013). Logarithmic Lipschitz norms and diffusion-induced instability, Nonlinear Analysis: Theory, Methods & Applications 83: 31–49.
  • [2] Aminzare, Z. and Sontag, E.D. (2014). Contraction methods for nonlinear systems: A brief introduction and ome open problems, 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 3835–3847.
  • [3] Astrid, P. (2004). Reduction of Process Simulation Models: A Proper Orthogonal Decomposition Approach, PhD thesis, University of Technology, Eindhoven.
  • [4] Astrid, P., Weiland, S., Willcox, K. and Backx, T. (2008). Missing point estimation in models described by proper orthogonal decomposition, IEEE Transactions on Automatic Control 53(10): 2237–2251.
  • [5] Banasiak, J. (2020). Logarithmic norms and regular perturbations of differential equations, Annales Universitatis Mariae Curie-Sklodowska, Sectio A: Mathematica 73(2): 5–19.
  • [6] Barrault, M., Maday, Y., Nguyen, N.C. and Patera, A.T. (2004). An ‘empirical interpolation’ method: Application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique 339(9): 667–672.
  • [7] Bartoszewicz, A. and Adamiak, K. (2019). A reference trajectory based discrete time sliding mode control strategy, International Journal of Applied Mathematics and Computer Science 29(3): 517–525, DOI: 10.2478/amcs-2019-0038.
  • [8] Benda, M. (1998). A central limit theorem for contractive stochastic dynamical systems, Journal of Applied Probability 35(1): 200–205.
  • [9] Berkooz, G., Holmes, P. and Lumley, J.L. (1993). The proper orthogonal decomposition in the analysis of turbulent flows, Annual Review of Fluid Mechanics 25(1): 539–575.
  • [10] Blocher, C., Saveriano, M. and Lee, D. (2017). Learning stable dynamical systems using contraction theory, 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, South Korea, pp. 124–129.
  • [11] Carlberg, K., Tuminaro, R. and Boggs, P. (2015). Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM Journal on Scientific Computing 37(2): B153–B184, DOI: 10.1137/140959602.
  • [12] Chaturantabut, S. (2017). Temporal localized nonlinear model reduction with a priori error estimate, Applied Numerical Mathematics 119: 225–238.
  • [13] Chaturantabut, S., Beattie, C. and Gugercin, S. (2016). Structure-preserving model reduction for nonlinear port-Hamiltonian systems, SIAM Journal on Scientific Computing 38(5): B837–B865, DOI: 10.1137/15M1055085.
  • [14] Chaturantabut, S. and Sorensen, D. (2012). A state space error estimate for POD-DEIM nonlinear model reduction, SIAM Journal on Numerical Analysis 50(1): 46–63, DOI: 10.1137/110822724.
  • [15] Chaturantabut, S. and Sorensen, D.C. (2010). Nonlinear model reduction via discrete empirical interpolation, SIAM Journal on Scientific Computing 32(5): 2737–2764, DOI: 10.1137/090766498.
  • [16] Chaturantabut, S. and Sorensen, D.C. (2011). Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media, Mathematical and Computer Modelling of Dynamical Systems 17(4): 337–353.
  • [17] Dahlquist, G. (1959). Stability and error bounds in the numerical integration of ordinary differential equations, Transactions of the Royal Institute of Technology (130).
  • [18] Feng, Z. and Soulaimani, A. (2007). Reduced order modelling based on pod method for 3D nonlinear aeroelasticity, 18th IASTED International Conference on Modelling and Simulation, MS’07, Montreal, Quebec, Canada, pp. 489–494.
  • [19] Ghasemi, M., Yang, Y., Gildin, E., Efendiev, Y. and Calo, V. (2015). Fast multiscale reservoir simulations using POD-DEIM model reduction, SPE Reservoir Simulation Symposium, Houston, TX, USA.
  • [20] Ghavamian, F., Tiso, P. and Simone, A. (2017). POD-DEIM model order reduction for strain-softening viscoplasticity, Computer Methods in Applied Mechanics and Engineering 317: 458–479.
  • [21] Gurka, R., Liberzon, A. and Hetsroni, G. (2006). POD of vorticity fields: A method for spatial characterization of coherent structures, International Journal of Heat and Fluid Flow 27(3): 416–423.
  • [22] Habibi, J., Moshiri, B. and Sedigh, A.K. (2008). Contractive predictive control of mixed logical dynamical hybrid systems, International Journal of Innovative Computing, Information and Control 4(6): 1283–1298.
  • [23] Hairer, E., Nørsett, S.P. and Wanner, G. (1993). Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd Edn, Springer, Berlin.
  • [24] Hinze, M., Kunkel, M., Steinbrecher, A. and Stykel, T. (2012). Model order reduction of coupled circuit-device systems, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 25(4): 362–377, DOI: 10.1002/jnm.840.
  • [25] Hochman, A., Bond, B. and White, J. (2011). A stabilized discrete empirical interpolation method for model reduction of electrical, thermal, and microelectromechanical systems, 48th ACM/EDAC/IEEE Design Automation Conference (DAC), New York, NY, USA, pp. 540–545.
  • [26] Intawichai, S. and Chaturantabut, S. (2020). A numerical study of efficient sampling strategies for randomized singular value decomposition, Thai Journal of Mathematics: 371–385.
  • [27] Isoz, M. (2019). POD-DEIM based model order reduction for speed-up of flow parametric studies, Ocean Engineering 186: 106083.
  • [28] Jouffroy, J. (2005). Some ancestors of contraction analysis, Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, pp. 5450–5455.
  • [29] Kellems, A.R., Chaturantabut, S., Sorensen, D.C. and Cox, S.J. (2010). Morphologically accurate reduced order modeling of spiking neurons, Journal of Computational Neuroscience 28(3): 477–494, DOI: 10.1007/s10827-010-0229-4.
  • [30] Kunisch, K. and Volkwein, S. (2010). Optimal snapshot location for computing POD basis functions, ESAIM: Mathematical Modelling and Numerical Analysis 44(3): 509–529.
  • [31] Lanata, F. and Grosso, A. D. (2006). Damage detection and localization for continuous static monitoring of structures using a proper orthogonal decomposition of signals, Smart Materials and Structures 15(6): 1811–1829.
  • [32] Lohmiller,W. and Slotine, J.J.E. (1998). On contraction analysis for non-linear systems, Automatica 34(6): 683–696.
  • [33] Lohmiller,W. and Slotine, J.J.E. (2000a). Control system design for mechanical systems using contraction theory, IEEE Transactions on Automatic Control 45(5): 984–989.
  • [34] Lohmiller, W. and Slotine, J.J.E. (2000b). Nonlinear process control using contraction theory, AIChE Journal 46(3): 588–596.
  • [35] Lozinskii, S.M. (1958). Error estimates for the numerical integration of ordinary differential equations. Part I, Izvestiya Vysshikh Uchebnykh Zavedenii: Matematika 6(5): 52–90, (in Russian).
  • [36] Peigné, M. and Woess,W. (2011). Stochastic dynamical systems with weak contractivity properties. II: Iteration of Lipschitz mappings, Colloquium Mathematicum 125(1): 55–81.
  • [37] Pham, Q.-C., Tabareau, N. and Slotine, J.-J. (2009). A contraction theory approach to stochastic incremental stability, IEEE Transactions on Automatic Control 54(4): 816–820.
  • [38] Rewieński, M.J. (2003). A Trajectory Piecewise-Linear Approach to Model Order Reduction of Nonlinear Dynamical Systems, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
  • [39] Rewienski, M. and White, J. (2001). A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, International Conference on Computer-Aided Design, San Jose, CA, USA, p. 252.
  • [40] Rewienski, M. and White, J. (2003). A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems 22(2): 155–170.
  • [41] Rewienski, M. and White, J. (2006). Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations, Linear Algebra and Its Applications 415(2–3): 426–454.
  • [42] Russo, G. and di Bernardo, M. (2011). On contraction of piecewise smooth dynamical systems, IFAC Proceedings Volumes 44(1): 13299–13304.
  • [43] Sanjuan, A., Rotondo, D., Nejjari, F. and Sarrate, R. (2019). An LMI-based heuristic algorithm for vertex reduction in LPV systems, International Journal of Applied Mathematics and Computer Science 29(4): 725–737, DOI: 10.2478/amcs-2019-0054.
  • [44] Schenone, E. (2014). Reduced Order Models, Forward and Inverse Problems in Cardiac Electrophysiology, Thesis, Université Pierre et Marie Curie Paris VI, Paris, https://tel.archives-ouvertes.fr/tel-01092945.
  • [45] Simpson-Porco, J.W. and Bullo, F. (2014). Contraction theory on Riemannian manifolds, Systems & Control Letters 65: 74–80.
  • [46] Söderlind, G. (1986). Bounds on nonlinear operators in finite-dimensional Banach spaces, Numerische Mathematik 50(1): 27–44, DOI: 10.1007/BF01389666.
  • [47] Söderlind, G. (2006). The logarithmic norm: History and modern theory, BIT Numerical Mathematics 46(3): 631–652, DOI: 10.1007/s10543-006-0069-9.
  • [48] Sontag, E.D. (2010). Contractive systems with inputs, in J.C. Willems et al. (Eds), Perspectives in Mathematical System Theory, Control and Signal Processing, Springer, Berlin, pp. 217–228, DOI: 10.1007/978-3-540-93918-4 20.
  • [49] Stanko, Z.P., Boyce, S.E. and Yeh, W.W.-G. (2016). Nonlinear model reduction of unconfined groundwater flow using POD and DEIM, Advances in Water Resources 97: 130–143.
  • [50] Sukuntee, N. and Chaturantabut, S. (2019). Model order reduction for Sine–Gordon equation using POD and DEIM, Thai Journal of Mathematics: 222–256.
  • [51] Sukuntee, N. and Chaturantabut, S. (2020). Parametric nonlinear model reduction using k-means clustering for miscible flow simulation, Journal of Applied Mathematics 2020: 1–12, Article ID 3904606.
  • [52] Ştefãnescu, R. and Navon, I.M. (2013). POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model, Journal of Computational Physics 237: 95–114, DOI: 10.1016/j.jcp.2012.11.035.
  • [53] Volkwein, S. (2008). Model reduction using proper orthogonal decomposition, Lecture notes, University of Konstanz, Konstanz, http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf.
  • [54] Walther, A., Griewank, A. and Vogel, O. (2003). ADOL-C: Automatic differentiation using operator overloading in C++, PAMM: Proceedings in Applied Mathematics and Mechanics 2(1): 41–44.
  • [55] Wang, D. and Xiao, A. (2015). Dissipativity and contractivity for fractional-order systems, Nonlinear Dynamics 80(1–2): 287–294.
  • [56] Wirtz, D., Sorensen, D. C. and Haasdonk, B. (2014). A posteriori error estimation for deim reduced nonlinear dynamical systems, SIAM Journal on Scientific Computing 36(2): A311–A338.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25246334-c502-4553-89b7-441ea298c1f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.