PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CT number accuracies for different number of detector array and age of detector: A multi-center study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: The accuracy of the CT number and its linearity are important parameters in computed tomography (CT) image quality. Both parameters may depend on the number of detector arrays and the age of detector. No previous study has investigated this issue. Purpose: The purpose of this study was to investigate the CT number accuracy of various materials in ACR 464 CT phantom images and its linearity from 55 different scanners as a function of the number of detector arrays and age of detector. Method: This study used an accredited ACR 464 CT phantom. The phantom was scanned by 55 CT different scanners from various vendors. The CT numbers of different materials and their linearity were automatically measured using IndoQCT software from images of the phantoms. The coefficient of determination (R2) was obtained from a graph of CT number versus material density. Information on the number of detector arrays (from 2- to 128-row array) and age of detector (from 1 to 12 years, determined from the commissioning date) were found from the Medical Physicist officer at each CT center. Result: It was found that 6 out of the 55 scanners had a CT number linearity lower than 0.990. The CT scanners with R2 values below this standard had a number of detector of 16- and 32-row array, and have detector ages of 3, 5, 8, 10, 11, and 18 years. Conclusion: The accuracy of CT number and its linearity were independent of the number of detector arrays and the age of the detector. The finding suggests that quality control of the accuracy of CT number and its linearity should to be carried out periodically so that if any issues can be addressed as soon as possible.
Słowa kluczowe
Rocznik
Strony
151--157
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
  • Balai Pengamanan Alat dan Fasilitas Kesehatan (BPAFK) Surakarta, Jl. Sindoro Raya Jl. Ring Road, Mojosongo, Jebres, Surakarta 57127, Central Java, Indonesia
  • Balai Pengamanan Alat dan Fasilitas Kesehatan (BPAFK) Surakarta, Jl. Sindoro Raya Jl. Ring Road, Mojosongo, Jebres, Surakarta 57127, Central Java, Indonesia
  • Department of Applied Physics and Medical Imaging, California State University Channel Islands, Camarillo, CA 93012, USA
Bibliografia
  • 1. Anam C, Amilia R, Naufal A, Ali MH. Automatic measurement of CT number in the ACR CT phantom and its implementation to investigate the impact of tube voltage on the measured CT number. Radiat Phys Chem. 2023;216:111434. doi: 10.1016/j.radphyschem.2023.111434.
  • 2. Afifi MB, Abdelrazek A, Deiab NA, Abd El-Hafez AI, El-Farrash AH. The effects of CT x-ray tube voltage and current variations on the relative electron density (RED) and CT number conversion curves. J Radiat Res Appl Sci. 2020;13(1):1–11. doi: 10.1080/16878507.2019.1693176.
  • 3. Sadia RT, Chen J, Zhang J. CT image denoising methods for image quality improvement and radiation dose reduction. J Appl Clin Med Phys. 2024;25(2):1–17. doi: 10.1002/acm2.14270.
  • 4. Diop AY, Diagne M, Faye NAB, Dieng MM. Feasibility study for the evaluation of doses received by organs during medical exposure for pediatric patient undergoing CT scan and estimation of the potential risk of radiation-induced cancers. Radiat Phys Chem. 2023;216:111432. doi: 10.1016/j.radphyschem.2023.111432.
  • 5. Anam C, Amilia R, Naufal A, Budi WS, Maya AT, Dougherty G. The automated measurement of CT number linearity using an ACR accreditation phantom. Biomed Phys Eng Express. 2023;9(1):17002. doi: 10.1088/2057-1976/aca9d5.
  • 6. Anam C, Amilia R, Naufal A, Dougherty G. Automatic measurement of CT number linearity in three types of Catphan phantoms. J Teknol. 2023;85(6):155–160. doi: 10.11113/jurnalteknologi.v85.20340.
  • 7. Brindhaban A, Jassim O. Effect of X-ray beam energy and image reconstruction technique on computed tomography numbers of various tissue equivalent materials. Radiography. 2021;27(1):95–100. doi: 10.1016/j.radi.2020.06.017.
  • 8. Duan X, Zhang Y. Establishing quality control action limits for CT number accuracy in spectral images using an American College of Radiology phantom. Med Phys. 2023;50(10):6071–6078. doi: 10.1002/mp.16626.
  • 9. Dragon JM, Guha S, Salvatore MM. Hounsfield units: Future applications in clinical practice, radiomics, and artificial intelligence. Clin Imaging. 2024;110:110141. doi: 10.1016/j.clinimag.2024.110141.
  • 10. Anam C, Amilia R, Naufal A, et al., Impact of noise level on the accuracy of automated measurement of CT number linearity on ACR CT and computational phantoms. J Biomed Phys Eng. 2023;13(4):353–362. doi: 10.31661/jbpe.v0i0.2302-1599.
  • 11. Al-Hayek Y, Spuur K, Davidson R, Hayre C, Currie G, Zheng X. The effect of inappropriate patient centring on CT numbers and radiation dose: A survey of current practices and knowledge. Radiography. 2024;30(1):100–106. doi: 10.1016/j.radi.2023.10.009.
  • 12. Kubon S, McLean AL, Eckardt N, et al. Early detection of aseptic bone necrosis post-cranioplasty: A retrospective CT analysis using Hounsfield units. J Cranio-Maxillofacial Surg. 2024;52(4):484–490. doi: 10.1016/j.jcms.2024.02.001.
  • 13. Cruz-Bastida JP, Zhang R, Gomez-Cardona D, Hayes J, Li K, Chen GH. Impact of noise reduction schemes on quantitative accuracy of CT numbers. Med Phys. 2019;46(7):3013–3024. doi: 10.1002/mp.13549.
  • 14. Davis AT, Palmer AL, Pani S, Nisbet A. Assessment of the variation in CT scanner performance (image quality and Hounsfield units) with scan parameters, for image optimisation in radiotherapy treatment planning. Phys Med. 2018;45;198–204. doi: 10.1016/j.ejmp.2017.11.036.
  • 15. Hahn PF, Blake MA, Boland GWL. Adrenal lesions: Attenuation measurement differences between CT scanners. Radiology. 2006;240(2):458–463. doi: 10.1148/radiol.2402042120.
  • 16. Birnbaum BA, Hindman N, Lee J, Babb JS. Multi-detector row CT attenuation measurements: Assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology. 2007;242(1):109–119. doi: 10.1148/radiol.2421052066.
  • 17. Roa AMA, Andersen HK, Martinsen ACT. CT image quality over time: Comparison of image quality for six different CT scanners over a six-year period. J Appl Clin Med Phys. 2015;16(2):350–365. doi: 10.1120/jacmp.v16i2.4972.
  • 18. Cropp RJ, Seslija P, Tso D, Thakur Y. Scanner and kVp dependence of measured CT numbers in the ACR CT phantom. J Appl Clin Med Phys. 2013;14(6):338–349. doi: 10.1120/jacmp.v14i6.4417.
  • 19. McCollough CH, Bruesewitz MR, McNitt-Gray MF, et al. The phantom portion of the American College of Radiology (ACR) Computed Tomography (CT) accreditation program: Practical tips, artifact examples, and pitfalls to avoid. Med Phys. 2004;31(9):2423–2442. doi: 10.1118/1.1769632.
  • 20. ACR. Phantom testing instructions instruction manual for testing the ACR CT phantom. 2004;1–16.
  • 21. Zarb F, Rainford L, McEntee MF. Image quality assessment tools for optimization of CT images. Radiography. 2010;16(2):147–153. doi: 10.1016/j.radi.2009.10.002.
  • 22. BAPETEN REPUBLIK INDONESIA. Peraturan Badan Pengawas Tenaga Nuklir Republik Indonesia Nomor 2 Tahun 2Oi8 Tentang Uji Kesesuaian Pesawat Sinar-X Radiologi Diagnostik dan Inervensional. 2018;1–73. Online]. Available: https://jdih.bapeten.go.id/unggah/dokumen/peraturan/364-full(diubah).pdf
  • 23. Kanamori H, Nakamori N, Inoue K, Takenaka E. Effects of scattered X-rays on CT images. Phys Med Biol. 1985;30(3):239–249. doi: 10.1088/0031-9155/30/3/004.
  • 24. Alikhani B, Jamali L, Raatschen HJ, Wacker F, Werncke T. Impact of CT parameters on the physical quantities related to image quality for two MDCT scanners using the ACR accreditation phantom: A phantom study. Radiography. 2017;23(3):202–210. doi: 10.1016/j.radi.2017.03.013.
  • 25. Das IJ, Cheng C, Cao M, Johnstone PAS. Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning. J Med Phys. 2016;41(1):3-11. doi: 10.4103/0971-6203.177277.
  • 26. Husby E, Svendsen ED, Andersen HK, Martinsen ACT. 100 days with scans of the same Catphan phantom on the same CT scanner. J Appl Clin Med. Phys. 2017;18(6):224–231. doi: 10.1002/acm2.12186.
  • 27. Lascola KM, O’Brien RT, Wilkins PA, Clark-Price SC, Hartman SK, Mitchell MA. Qualitative and quantitative interpretation of computed tomography of the lungs in healthy neonatal foals. Am J Vet Res. 2013;74(9):1239–1246. doi: 10.2460/ajvr.74.9.1239.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-251eb10c-41bc-4447-ba96-1fb6aa7769c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.