PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of direct methanol fuel cell power s

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Optymalizacja bezpośredniego systemu zasilania ogniw paliwowych z metanolem
Języki publikacji
EN
Abstrakty
EN
This paper presents a non-linear dynamic modeling of direct methanol fuel cell (DMFC) based on a simplified mechanism for methanol electro-oxidation reaction and the evolution intermediate species coverage with time. The model is developed to describe the I-V relationships based on designed experiments; it is then integrated into multiple optimizations to achieve the adaptation. Finally, numerical simulations are performed with Matlab software to optimize the underlying mechanisms of the proposed operation process in order to improve the energy efficiency of the cell.
PL
W pracy przedstawiono nieliniowe modelowanie dynamiczne bezpośredniego ogniwa paliwowego na metanol (DMFC) oparte na uproszczonym mechanizmie reakcji elektroutleniania metanolu i pokryciu w czasie form pośrednich ewolucji. Model został opracowany w celu opisania relacji IV-V w oparciu o zaprojektowane eksperymenty; jest następnie integrowany z wieloma optymalizacjami, aby osiągnąć adaptację. Na koniec za pomocą oprogramowania Matlab przeprowadza się symulacje numeryczne, aby zoptymalizować mechanizmy leżące u podstaw proponowanego procesu działania w celu poprawy efektywności energetycznej ogniwa.
Rocznik
Strony
46--50
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • National Polytechnic School of Oran Mauris Audin-Algeria, B.P 1523 M’Naouer Oran 31000 Algeria
  • National Polytechnic School of Oran Mauris Audin-Algeria, B.P 1523 M’Naouer Oran 31000 Algeria
  • University of Science and Technology of Oran, USTO- MB, Algeria
Bibliografia
  • [1] F. Ji, L. Yang, H. Sun, S. Wang, H. Li, L. Jiang, G. Sun, (2017), A novel method for analysis and prediction of methanol mass transfer in direct methanol fuel cell, Energy Conversion and Management 154, 482– 490.
  • [2] G. Q. Lu, P. C. Lim, F. Q. Liu and C. Y. Wang (2005), On mass transport in an air-breathing DMFC stack; International journal of energy research, DOI: 10.1002/er.1138, 29:1041–1050.
  • [3] Yun Sheng Ye, John Rick and Bing Joe Hwang (2012), Water soluble polymers as proton exchange membranes for fuel cells ; Polymers 2012, 4, 913-963; doi:10.3390/polym4020913.
  • [4] G.Q. Lu, C.Y. Wang (2005), Development of micro direct methanol fuel cells for high power applications, Journal of Power Sources 144 141–145; doi:10.1016/j.jpowsour.2004.12.023, Elsevier B.V.
  • [5] Liu J Zhou, Z Zhao, X Xin, Q Sun, G and Yi B (2004), Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test. Chemical Physics 6, p134–137.
  • [6] Pyoungho Choi (2004), Investigation of thermodynamic and transport properties of proton exchange membranes in fuel cell applications, Faculty of work center polytechnicinstitute.
  • [7] Domenico Borello, Andrea Calabriso, Luca Cedola, Luca Del Zotto, Simone Giovanni Santori (2014), Development of improved passive configurations of DMFC with reduced contact resistance,Energy Procedia 61 2654 – 2657 , doi: 10.1016/j.egypro.2014.12.268.
  • [8] Hong Sun, Mingfu Yu, Zhijie Li , Saif Almheiri (2015), A Molecular dynamic simulation of hydrated proton transfer in perfluorosulfonate ionomer membranes (Nafion117), Journal of Chemistry; Volume 2015, Article ID 169680, 10 pages, doi.org/10.1155/2015/169680.
  • [9] Mukherjee, PP, Kang, Q and Wang, CY (2011), Pore-scale modeling of two phase transport in polymer electrolyte fuel cells progress and perspective. Energy and Environmental Science 4, 346–369, with permission from Royal Society of Chemistry.
  • [10] Larry K Mc Carthy (2006), Steady flow and pulsed performance trends of high concentration DMFCs, by Georgia Institute of Technology.
  • [11] Jayakumar, A, Madheswaran, D.K, Kumar, N.M. (2021), A Critical Assessment on Functional Attributes and Degradation Mechanism of Membrane Electrode Assembly Components in Direct Methanol Fuel Cells, Sustainability, 13, 13938, doi.org/ 10.3390/su132413938.
  • [12] A Heinzel, F Mahlendorf and C Jansen (2009), Bipolar Plates. University of Duisburg Essen, Duisburg, Germany. Elsevier B.V.
  • [13] Shima Sharifi, Rahbar Rahimi, Davod Mohebbi-Kalhori, C. Ozgur Colpan (2020), Coupled computational fluid dynamics-response surface methodology to optimize direct methanol fuel cell performance for greener energy generation, doi.org/10.1016/j.energy.2020.117293 ; Energy Volume 198.
  • [14] T Schultz, S Zhou, K Scott, M Ginkel and E D Gilles (2001), Dynamics of the direct methanol fuel cell (DMFC) : Experiments and model based analysis Chemical Engineering Science, Volume 56, Issue 2, P 333-341.
  • [15] Michael H. Eikerling, Kourosh Malek and Qianpu Wang (2008) Catalyst, Layer Modeling: Structure, Properties and Performance, springer link DOI: 10.1007/978-1-84800-936-3_8.
  • [16] Juan Sánchez Monreal, Marcos Vera, Pablo A García Salaberri (2017), Fundamentals of Electrochemistry with Application to Direct Alcohol Fuel Cell Modeling, DOI: 10.5772/intechopen.71635.
  • [17] A. Tesfai, J.T.S. Irvine (2012), Fuel Cells and Hydrogen Technology, Comprehensive Renewable Energy, Volume 8.
  • [18] T. J. Yen, N. Fang, and X. Zhang, G. Q. Lu and C. Y. Wang (2003), A micro methanol fuel cell operating at near room temperature, Applied Physics Letters, doi: 10.1063/1.1625429, Volume 83, Number 19.
  • [19] McNichol, B D (1981), Electrocatalytic problems associatedwith the development of direct methanol air fuel cells. Journal of Electroanalytical Chemistry, 118, 71-87.
  • [20] Edmund J. F. Dickinson, Z and Gareth Hinds (2019), The Butler-Volmer Equation for Polymer Electrolyte Membrane Fuel Cell (PEMFC) Electrode Kinetics: A Critical Discussion; Journal of The Electrochemical Society, 166 (4) F221-F231.
  • [21] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel and E. D. Gilles (2001), Dynamics of the direct methanol fuel cell (DMFC): Experiments and model-based analysis, Chemical Engineering Science, Volume 56, Issue 2, Pages 333-341.
  • [22]R Schlôgl (1966) Membrane permeation in Systems far from equilibrium. Berichte der bunsengesellschaft for Physikalische Chemie, 70, 400, 414.
  • [23] Bernardi, DW, Verbrugge, M W (1991), Mathematical model ofa gas dilusion electrode bonded to a polymer electrolyte. A.I.Ch.E. Journal, 37, 1151-1163.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2519ec82-50cb-45fa-ad3a-e2e39fe687d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.