PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial analysis of seasonal precipitation using various interpolation methods in the Euphrates basin, Turkey

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is vital to accurately map the spatial distribution of precipitation, which is widely used in many fields such as hydrology, climatology, meteorology, ecology, and agriculture. This study aimed to reveal the spatial distribution of seasonal, long-term average precipitation in the Euphrates Basin with various interpolation methods. For this reason, Simple Kriging, Ordinary Kriging, Universal Kriging, Ordinary CoKriging, Empirical Bayesian Kriging, Radial Basis Functions (Completely Regularized Spline, Thin Plate Spline, Multiquadratic, Inverse Multiquadratic, Spline with Tensor), Local Polynomial Interpolation, Global Polynomial Interpolation, and Inverse Distance Weighting methods have been applied in the Geographical Informa tion Systems environment. Long-term seasonal precipitation averages between 1966 and 2017 are presented as input for predicting precipitation maps. The accuracy of the precipitation prediction maps was based on linear regression analysis, root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R), and determination coefficient (R2 ) values obtained from the cross-validation tests. The most suitable method was chosen for the interpolation method that gives the lowest RMSE, MAE, and the largest R and R2 . As a result of the study, Ordinary CoKriging in spring and winter precipitation, Local Polynomial Interpolation in summer precipitation, and Ordinary Kriging in autumn precipitation were the most appropriate estimation methods.
Czasopismo
Rocznik
Strony
859--878
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • Department of Civil Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey
Bibliografia
  • 1. Adhikary SK, Yilmaz AG, Muttil N (2015) Optimal design of rain gauge network in the Middle Yarra River catchment, Australia. Hydrol Process 29:2582–2599. https://doi.org/10.1002/hyp.10389
  • 2. Adhikary SK, Muttil N, Yilmaz AG (2017) Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments. Hydrol Process 31(12):2143–2161. https://doi.org/10.1002/hyp.11163
  • 3. Agou VD, Varouchakis EA, Hristopulos DT (2019) Geostatistical analysis of precipitation in the island of Crete (Greece) based on a sparse monitoring network. Environ Monit Assess 191(6):1–24. https://doi.org/10.1007/s10661-019-7462-8
  • 4. Ali G, Sajjad M, Kanwal S, Xiao T, Khalid S, Shoaib F, Gul HN (2021) Spatial–temporal characterization of rainfall in Pakistan during the past half-century (1961–2020). Sci Rep 11(1):1–15. https://doi.org/10.1038/s41598-021-86412-x
  • 5. Amini MA, Torkan G, Eslamian S, Zareian MJ, Adamowski JF (2019) Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales. Acta Geophys 67(1):191–203. https://doi.org/10.1007/s11600-018-0226-y
  • 6. Aslantaş P, Akyürek Z, Heuvelink G (2016) Obtaining the distribution of precipitation over time and space. Dicle Univ Eng Faculty J Eng 7(2):257–269
  • 7. Bellu A, Fernandes LFS, Cortes RM, Pacheco FA (2016) A framework model for the dimensioning and allocation of a detention basin system: the case of a flood-prone mountainous watershed. J Hydrol 533:567–580. https://doi.org/10.1016/j.jhydrol.2015.12.043
  • 8. Bostan P, Heuvelink GB, Akyurek S (2012) Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int J Appl Earth Obs Geoinf 19:115–126. https://doi.org/10.1016/j.jag.2012.04.010
  • 9. Caracciolo D, Arnone E, Noto LV (2014) Influence of spatial precipitation sampling on hydrological response at the catchment scale. J Hydrol Eng 19:544–553. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000829
  • 10. Cheng M, Wang Y, Engel B, Zhang W, Peng H, Chen X, Xia H (2017) Performance assessment of spatial interpolation of precipitation for hydrological process simulation in the Three Gorges Basin. Water 9:838. https://doi.org/10.3390/w9110838
  • 11. Childs C (2004) Interpolating surfaces in ArcGIS spatial analyst. ArcUser, July-Sep 3235:32–35
  • 12. Di Piazza A, Conti FL, Noto LV, Viola F, La Loggia G (2011) Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int J Appl Earth Obs Geoinf 13:396–408. https://doi.org/10.1016/j.jag.2011.01.005
  • 13. Doğan HM, Yılmaz DS, Kılıç OM (2013) Mapping and interpreting some soil surface properties of central Kelkit basin by inverse distance weighted (IDW) method. J Gaziosmanpasa Sci Res 6:46–54. https://doi.org/10.1080/01431161.2013.796097
  • 14. Gupta A, Kamble T, Machiwal D (2017) Comparison of ordinary and Bayesian kriging techniques in depicting rainfall variability in arid and semi-arid regions of north-west India. Environ Earth Sci 76:1–16. https://doi.org/10.1007/s12665-017-6814-3
  • 15. Hadi SJ, Tombul M (2018) Comparison of spatial interpolation methods of precipitation and temperature using multiple integration periods. J Indian Soc Remote Sens 46:1187–1199. https://doi.org/10.1007/s12524-018-0783-1
  • 16. Ilker A (2012) Spatial distribution of rainfall in the Mediterranean region. Master's thesis, Suleyman Demirel University Graduate School of Natural and Applied Sciences
  • 17. Isaaks EH, Srivastava MR (1989) An introduction to applied geostatistics. Oxford University Press, New York
  • 18. Javari M (2017) Comparison of interpolation methods for modeling spatial variations of precipitation in Iran. Int J Environ Sci Edu 12(5):1037–1054
  • 19. Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analyst. Redlands, Esri
  • 20. Kale MM (2018) Determination of changing spatial distribution of precipitation with deterministic and stochastic methods in Yeşilırmak basin. Bull Earth Sci Appl Res Cent Hacet Univ 39:263–276. https://doi.org/10.17824/yerbilimleri.503952
  • 21. Kamali MI, Nazari R, Faridhosseini A, Ansari H, Eslamian S (2015) The determination of reference evapotranspiration for spatial distribution mapping using geostatistics. Water Resour Manage 29:3929–3940. https://doi.org/10.1007/s11269-015-1037-4
  • 22. Kamińska A, Grzywna A (2014) Comparison of deteministic interpolation methods for the estimation of groundwater level. J Ecol Eng 15:55–60. https://doi.org/10.12911/22998993.1125458
  • 23. Karydas CG, Gitas IZ, Koutsogiannaki E, Lydakis-Simantiris N, Silleos G (2009) Evaluation of spatial interpolation techniques for mapping agricultural topsoil properties in Crete. EARSeL eProc 8:26–39
  • 24. Katipoglu OM (2021) Estimating the distribution of average annual precipitation in the Euphrates Basin through geostatistical interpolation methods. International Congress of Engineering Sciences and Multidisciplinary Approaches, 23–24, Istanbul
  • 25. Keblouti M, Ouerdachi L, Boutaghane H (2012) Spatial interpolation of annual precipitation in Annaba-Algeria-comparison and evaluation of methods. Energy Procedia 18:468–475. https://doi.org/10.1016/j.egypro.2012.05.058
  • 26. Khorrami B, Gündüz O (2019) Developed spatial variation pattern based on geostatistical interpolation techniques for monthly average precipitation: a case study from Izmir-Turkey. 10. National Hydrology Congress Muğla, Turkey
  • 27. Krivoruchko K (2012) Empirical bayesian kriging. ArcUser Fall 6(10)
  • 28. Kumar V, Jain SK (2010) Rainfall trend in Ganga-Brahmputra-Meghna river basins of India (1951–2004). Hydrol J 33:59–66
  • 29. Lloyd C (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J Hydrol 308:128–150. https://doi.org/10.1016/j.jhydrol.2004.10.026
  • 30. Lloyd C (2010) Nonstationary models for exploring and mapping monthly precipitation in the United Kingdom. Inte J Climatol J Royal Meteorol Soc 30:390–405. https://doi.org/10.1002/joc.1892
  • 31. Malik A, Kumar A, Guhathakurta P, Kisi O (2019) Spatial-temporal trend analysis of seasonal and annual rainfall (1966–2015) using innovative trend analysis method with significance test. Arab J Geosci 12:1–23. https://doi.org/10.1007/s12517-019-4454-5
  • 32. Nikolova N, Vassilev S (2006) Mapping precipitation variability using different interpolation methods. In: Proceedings of the conference on water observation and information system for decision support (BALWOIS), 25–29
  • 33. Phillips DL, Dolph J, Marks D (1992) A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agri For Meteorol 58:119–141. https://doi.org/10.1016/0168-1923(92)90114-J
  • 34. Price K, Purucker ST, Kraemer SR, Babendreier JE, Knightes CD (2014) Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales. Hydrol Process 28:3505–3520. https://doi.org/10.1002/hyp.9890
  • 35. QGIS (2021) A gentle introduction to GIS, spatial analysis. https://docs.qgis.org/3.16/en/docs/gentle_gis_introduction/spatial_analysis_interpolation.html (Accessed: 31.12.2021)
  • 36. Rata M, Douaoui A, Larid M, Douaik A (2020) Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria. Theor Appl Climatol 141:1009–1024. https://doi.org/10.1007/s00704-020-03218-z
  • 37. Sensoy S, Demircan M, Alan I (2008) Trends in Turkey climate extreme indices from 1971 to 2004. In: Third international conference BALWOIS
  • 38. Terêncio D, Fernandes LS, Cortes R, Pacheco F (2017) Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses. J Hydrol 550:318–330. https://doi.org/10.1016/j.jhydrol.2017.05.003
  • 39. Terêncio D, Fernandes LS, Cortes R, Moura J, Pacheco F (2018) Rainwater harvesting in catchments for agro-forestry uses: a study focused on the balance between sustainability values and storage capacity. Sci Total Environ 613:1079–1092. https://doi.org/10.1016/j.scitotenv.2017.09.198
  • 40. Vicente-Serrano SM, Saz-Sánchez MA, Cuadrat JM (2003) Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Clim Res 24:161–180. https://doi.org/10.3354/cr024161
  • 41. Webster R, Oliver MA (2007) Geostatistics for environmental scientists. John Wiley
  • 42. Yavuz H, Erdoğan S (2012) Spatial analysis of monthly and annual precipitation trends in Turkey. Water Res Manag 26(3):609–621. https://doi.org/10.1007/s11269-011-9935-6
  • 43. Yilmaz AG, Muttil N (2014) Runoff estimation by machine learning methods and application to the Euphrates basin. Turkey J Hydrol Eng 19(5):1015–1025. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000869
  • 44. Yucel I, Onen A (2014) Evaluating a mesoscale atmosphere model and a satellite-based algorithm in estimating extreme rainfall events in northwestern Turkey. Nat Hazard 14(3):611–624. https://doi.org/10.5194/nhess-14-611-2014,2014
  • 45. Yurddaş K (2008) Precipitation and temperature changes and trends in Firat basin. Master's thesis, Kahramanmaraş Sutcu Imam University Institute of Social Sciences Kahramanmaraş, Turkey
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25124477-ef26-4751-854c-4452f72c6bbe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.