Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The type, magnitude, and distribution of thermal stress arising during the hardening process of steel primarily depend – apart from the geometry of the treated component and the type of metallic material used – on the type of cooling medium employed. The difference in cooling rates between the core and the surface of the object affects the extent of deformation, particularly in large-scale components with complex shapes. Due to their high hardness, boron-alloyed steels are frequently used for components exposed to abrasive wear, and their heat treatment is typically performed on profiled structural elements such as plowshares or cultivator coulters. The critical cooling rate is primarily dependent on the chemical composition of the material and increases as its hardenability index decreases. Consequently, it is essential to investigate the feasibility of applying various heat treatment processes to medium-carbon steels, including the widely used martensitic steel Hardox 500. This study presents the results of abrasive wear tests conducted on the aforementioned steel, subjected to different heat treatment variants, which involved varying cooling rates following austenitization. For this purpose, the cooling media used included deoxygenated quenching water, mineral transformer oil, synthetic quenching oil, and air-blast cooling. For comparative purposes, equilibrium-cooled samples were also analyzed. The research findings demonstrated that the highest resistance to abrasive wear was achieved by samples quenched in water, whereas a gradual decrease in wear resistance was observed in samples cooled in media with lower cooling intensity coefficients. Furthermore, it was found that the traditionally employed roughness parameters are not suitable for evaluating the condition of surfaces subjected to abrasion. Therefore, for a comprehensive assessment of the tribological resistance of Hardox 500 steel, more advanced surface topography analysis methods must be employed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
173--195
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
- Department of Vehicle Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27 Str.50-370 Wrocław, Poland
autor
- Department of Vehicle Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27 Str.50-370 Wrocław, Poland
autor
- Department of Light Elements Engineering, Foundry and Automation, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27 Str.50-370 Wrocław, Poland
autor
- Department of Vehicle Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27 Str.50-370 Wrocław, Poland
Bibliografia
- [1] Białobrzeska, B., Jasiński, R., Konat, Ł., Szczepański, Ł., Analysis of the properties of Hardox extreme steel and possibilities of its applications in machinery, Metals (Basel), 2021, 11: 162. doi: 10.3390/met11010162
- [2] Konat, Ł., Jasiński, R., Białobrzeska, B., Szczepański, Ł., Analysis of the static and dynamic properties of wear-resistant Hardox 600 steel in the context of its application in working elements, Mater. Sci.-Poland, 2021, 39: 86–102. doi: 10.2478/msp-2021-0007
- [3] Pawlak, K., Białobrzeska, B., Konat, Ł., The influence of austenitizing temperature on prior austenite grain size and resistance to abrasion wear of selected low-alloy boron steel, Arch. Civ. Mech. Eng., 2016, 16: 913–926. doi: 10.1016/j.acme.2016.07.003
- [4] Llewellyn, D.T., Cook, W.T., Metallurgy of boron-treated low-alloy steels, Met. Technol., 1974, 1: 517–529. doi: 10.1179/030716974803287924
- [5] Simcoe, C.R., Elsea, A.R., Manning, G.K., Further work on the boron-hardenability mechanism, JOM, 1956, 8: 984–988. doi: 10.1007/BF03377806
- [6] Rosenberg, S.J., Temper brittleness of boron-treated steels, J. Res. Natl Bur. Stand., 1957, 58: 175–187. doi: 10.6028/jres.058.024
- [7] Kawamura, K., Otsubo, T., Relationship between the hardenability of steel and the “effective boron” in steel, Tetsu-to-Hagané, 1976, 16: 545–550
- [8] Sharma, M., Ortlepp, I., Bleck, W., Boron in heat-treatable steels: a review, Steel Res. Int., 2019, 90: 1900133. doi: 10.1002/SRIN.201900133
- [9] Konat, Ł., Napiórkowski, J., The effect of the method and parameters of the heat treatment on abrasive wear resistance of 38GSA steel, Q. Tribologia, 2019, 2: 61–69. doi: 10.5604/01.3001.0013.5435
- [10] https://www.ssab.com/en/brands-and-products/hardox/product-program, 2024
- [11] Rudnik, S., Metaloznawstwo, vol. II, Warszawa, Państwowe Wydawnictwo Naukowe PWN, 1983
- [12] Luo, K., Bai, B., Microstructure, mechanical properties and high stress abrasive wear behavior of air-cooled MnCrB cast steels, Mater. Des. (1980-2015), 2010, 31: 2510–2516. doi: 10.1016/j.matdes.2009.11.040
- [13] Bensaid, K., Dhiflaoui, H., Bouzaiene, H., Yahyaoui, H., Fredj, N.B., Effects of the cooling mode on the integrity and the multi-pass micro-scratching wear resistance of Hardox 500 ground surfaces, Int. J. Adv. Manuf. Technol., 2021, 113: 2865–2882. doi: 10.1007/s00170-021-06719-x
- [14] Napiórkowski, J., Konat, Ł., Ligier, K., The structural properties and resistance to abrasive wear in soil of Creusabro steel, Tribologia, 2016, 269: 105–119. doi: 10.5604/01.3001.0010.6611
- [15] Zemlik, M., Konat, Ł., Napiórkowski, J., Comparative analysis of the influence of chemical composition and microstructure on the abrasive wear of high-strength steels, Materials, 2022, 15: 5083. doi: 10.3390/ma15145083
- [16] George, R., Bardelcik, A., Worswick, M.J., Hot forming of boron steels using heated and cooled tooling for tailored properties, J. Mater. Process. Technol., 2012, 212: 2386–2399. doi: 10.1016/j.jmatprotec.2012.06.028
- [17] Bardelcik, A., Salisbury, C.P., Winkler, S., Wells, M.A., Worswick, M.J., Effect of cooling rate on the high strain rate properties of boron steel, Int. J. Impact Eng., 2010, 37: 694–702. doi: 10.1016/j.ijimpeng.2009.05.009
- [18] Suh, C.H., Jang, W.S., Oh, S.K., Lee, R.G., Jung, Y.C., Kim, Y.S., Effect of cooling rate during hot stamping on low cyclic fatigue of boron steel sheet, Met. Mater. Int., 2012, 18: 559–566. doi: 10.1007/s12540-012-4002-2
- [19] Li, F.F., Fu, M.W., Lin, J.P., Effect of cooling path on the phase transformation of boron steel 22MnB5 in hot stamping process, Int. J. Adv. Manuf. Technol., 2015, 81: 1391–1402. doi: 10.1007/s00170-015-7298-5
- [20] Białobrzeska, B., Dziurka, R., Żak, A., Bała, P., The influence of austenitization temperature on phase transformations of supercooled austenite in low-alloy steels with high resistance to abrasion wear, Arch. Civ. Mech. Eng., 2018, 18: 413–429. doi: 10.1016/j.acme.2017.09.004
- [21] Cegiel, L., Konat, Ł., Pawłowski, T., Pękalski, G., Stale Hardox – nowe generacje materiałów konstrukcyjnych maszyn górnictwa odkrywkowego, Węgiel Brunatny, 2006, 3: 24–29
- [22] Białobrzeska, B., Kostencki, P., Abrasive wear characteristics of selected low-alloy boron steels as measured in both field experiments and laboratory tests, Wear, 2015, 328–329: 149–159. doi: 10.1016/j.wear.2015.02.003
- [23] Moayyedian, M., Mohajer, A., Kazemian, M.G., Mamedov, A., Derakhshandeh, J.F., Surface roughness analysis in milling machining using design of experiment, SN Appl. Sci., 2020, 2: 1–9. doi: 10.1007/S42452-020-03485-5/TABLES/7
- [24] Turichin, G., Kuznetsov, M., Klimova-Korsmik, O., Sklyar, M., Zhitenev, A., Kurakin, A., et al., Laser-Arc hybrid welding perspective ultra-high strength steels: influence of the chemical composition of weld metal on microstructure and mechanical properties, Procedia CIRP, 2018, 74: 752–756. doi: 10.1016/j.procir.2018.08.017
- [25] Valtonen, K., Ojala, N., Haiko, O., Kuokkala, V.T., Comparison of various high-stress wear conditions and wear performance of martensitic steels, Wear, 2019, 426–427: 3–13. doi: 10.1016/j.wear.2018.12.006
- [26] Valtonen, K., Keltamäki, K., Kuokkala, V.T., High-stress abrasion of wear resistant steels in the cutting edges of loader buckets, Tribol. Int., 2018, 119: 707–720. doi: 10.1016/j.triboint.2017.12.013
- [27] Napiórkowski, J., Lemecha, M., Konat, Ł., Forecasting the wear of operating parts in an abrasive soil mass using the Holm-Archard model, Materials, 2019, 12: 2180. doi: 10.3390/ma12132180
- [28] Zemlik, M., Białobrzeska, B., Stachowicz, M., Hanszke, J., The influence of grain size on the abrasive wear resistance of Hardox 500 steel, Appl. Sci., 2024, 14: 11490. doi: 10.3390/app142411490
- [29] Zemlik, M., Konat, Ł., Leśny, K., Jamroziak, K., Comparison of abrasive wear resistance of Hardox steel and Hadfield cast steel, Appl. Sci., 2024, 14: 11141. doi: 10.3390/app142311141
- [30] Ligier, K., Zemlik, M., Lemecha, M., Konat, Ł., Napiórkowski, J., Analysis of wear properties of Hardox steels in different soil conditions, Materials, 2022, 15: 7622. doi: 10.3390/ma15217622
- [31] Szala, M., Szafran, M., Macek, W., Marchenko, S., Hejwowski, T., Abrasion resistance of S235, S355, C45, AISI 304 and Hardox 500 steels with usage of garnet, corundum and carborundum abrasives, Adv. Sci. Technol. Res. J., 2019, 13: 151–161. doi: 10.12913/22998624/113244
- [32] Tarasiuk, W., Napiórkowski, J., Ligier, K., Impact of slip speed on the wear intensity of 38GSA and Hardox 500 steels, Q. Tribologia, 2018, 280: 121–125. doi: 10.5604/01.3001.0012.7552
- [33] Tarasiuk, W., Napiórkowski, J., Ligier, K., Krupicz, B., Comparison of the wear resistance between Hardox 500 steel and 20MnCr5 steel, Q. Tribologia, 2017, 273: 165–170. doi: 10.5604/01.3001.0010.6254
- [34] Vargova, M., Tavodova, M., Monkova, K., Dzupon, M., Research of resistance of selected materials to abrasive wear to increase the ploughshare lifetime, Metals (Basel), 2022, 12: 940. doi: 10.3390/met12060940
- [35] Box, G.E.P., Some theorems on quadratic forms applied in the study of analysis of variance problems: II. Effect of inequality of variances and of correlation of errors in the two-way classification, Ann. Math. Stat., 1954, 25: 484–498. doi: 10.1214/AOMS/1177728717
- [36] Box, G.E.P., Some theorems on quadratic forms applied in the study of analysis of variance problems: I. Effect of inequality of variances in the one-way classification, Ann. Math. Stat., 1954, 25: 290–302. doi: 10.1214/AOMS/1177728786
- [37] Sharma, M., Ortlepp, I., Bleck, W., Boron in heat‐treatable steels: a review, Steel Res. Int., 2019, 90: 1900133. doi: 10.1002/srin.201900133
- [38] Wang, Z., Wu, X., Liu, D., Zuo, X., Correlation between microstructure and fracture behavior in thick HARDOX 450 wear-resistant steel with TiN inclusions, Front. Mater., 2021, 8: 691551. doi: 10.3389/fmats.2021.691551
- [39] Morito, S., Tanaka, H., Konishi, R., Furuhara, T., Maki, T., The morphology and crystallography of lath martensite in Fe-C alloys, Acta Mater., 2003, 51: 1789–1799. doi: 10.1016/S1359-6454(02)00577-3
- [40] Hidalgo, J., Santofimia, M.J., Effect of prior austenite grain size refinement by thermal cycling on the microstructural features of as-quenched lath martensite, Metall. Mater. Trans. A Phys. Metall Mater Sci., 2016, 47: 5288–5301. doi: 10.1007/S11661-016-3525-4/FIGURES/12
- [41] Kitahara, H., Ueji, R., Tsuji, N., Minamino, Y., Crystallographic features of lath martensite in low-carbon steel, Acta Mater., 2006, 54: 1279–1288. doi: 10.1016/J.ACTAMAT.2005.11.001
- [42] Pak, J.H., Bhadeshia, H.K.D.H., Karlsson, L., Keehan, E., Coalesced bainite by isothermal transformation of reheated weld metal, Sci. Technol. Weld. Join., 2008, 13: 593–597. doi: 10.1179/136217108X338926
- [43] Pak, J., Suh, D.W., Bhadeshia, H.K.D.H., Promoting the coalescence of bainite platelets, Scr. Mater., 2012, 66: 951–953. doi: 10.1016/J.SCRIPTAMAT.2012.02.041
- [44] Pak, J.H., Bhadeshia, H.K.D.H., Karlsson, L., Mechanism of misorientation development within coalesced martensite, Mater. Sci. Technol. (United Kingdom), 2012, 28: 918–923. doi: 10.1179/1743284712Y.0000000023
- [45] Pous-Romero, H., Bhadeshia, H., Coalesced martensite in pressure vessel steels, J. Press. Vessel. Technol. Trans. ASME, 2014, 136: 031402. doi: 10.1115/1.4026192
- [46] Ou, X., Sietsma, J., Santofimia, M.J., Coalescence of martensite under uniaxial tension of iron crystallites by atomistic simulations, Mater. Sci. Technol., 2020, 36: 1191–1199. doi: 10.1080/02670836.2020.1762301
- [47] Stachowiak, G.W., Batchelor, A.W., Engineering tribology, London, Butterworth-Heinemann, 2011
- [48] Napiórkowski, J. (red.), Badania i modelowanie procesów zużywania ściernego i zmęczeniowego, Olsztyn, Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olszynie, 2014
- [49] Chruszczow, M.M., Babiczew, M.A., Abrazivnoe iznosivanie, Izd. Nauka, Moskwa, 1970
- [50] Stawicki, T., Białobrzeska, B., Kostencki, P., Tribological properties of plough shares made of pearlitic and martensitic steels, Metals (Basel), 2017, 7: 139. doi:10.3390/MET7040139
- [51] Kovalev, A., Yazhao, Z., Hui, C., Meng, Y., A concept of the effective surface profile to predict the roughness parameters of worn surface, Front. Mech. Eng., 2019, 5: 31. doi: 10.3389/FMECH.2019.00031/FULL
- [52] Garcia-Suarez, J., Brink, T., Molinari, J.F., Roughness evolution induced by third-body wear, Tribol. Lett., 2024, 72: 1–10. doi:10.1007/S11249-024-01833-9/FIGURES/4
- [53] Bigerelle, M., Mathia, T., Bouvier, S., The multi-scale roughness analyses and modeling of abrasion with the grit size effect on ground surfaces, Wear, 2012, 286–287: 124–135. doi:10.1016/j.wear.2011.08.006ï
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2510688a-329a-46f4-b684-3c392840700f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.