PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Types of Grass of Green Roofs for the Design of Thermal Comfort in Buildings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of the research was to study the effect of the Stenotaphrum secundatum and Zoysia japonica grasses on the higher and lower environment temperature and lower relative humidity; the secondary objective was to compare whether the Stenotaphrum secundatum grass has a greater impact on the environment parameters of comfort than the Zoysia japonica species. Six materials were used for the extensive green roof, each one forming a layer of the system, which were placed on the concrete slab and in an upward direction, including: PVC geomembrane, Polyester asphalt carpet, Pumice stone, Planar geodren, Prepared soil with guano, compost, muss, and Substrate. In order to make measurements of the higher and lower ambient temperature, a digital thermometer and lower relative humidity meter was used. Stenotaphrum secundatum and Zoysia japonica were used as grass species, as they were the most representative of the grasses used in extensive green roofs. The experimentation was carried out for 2 months from September to October of 2021, having built 3 modules of 1000x600mm roofs, including 1module of the concrete roof with ceramic covering and 2 modules of extensive green roof with two types of grass: Stenotaphrum secundatum and Zoysia japonica. The readings of the environment temperature and relative humidity of the higher and lower part were taken in six points of each module to have a greater number of representative measurements. The watering of the 2 green roof modules with grass was carried out twice a week, applying 5L of water per module. The results indicate that the Zoysia japonica grass is the one that presents a better behavior before the higher ambient temperature and that the Stenotaphrum secundatum grass behaves better before the lower ambient temperature and lower relative humidity. The conclusions indicate that the Stenotaphrum secundatum grass behaves better temperature and relative humidity; the two grass types exhibit different behavior.
Rocznik
Strony
223--229
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Civil Engineering Program, Universidad Peruana de Ciencias Aplicadas, Av. Prolongación Primavera 2390, 15023, Lima, Perú
  • Industrial Engineering Program, Universidad Peruana de Ciencias Aplicadas, Av. Prolongación Primavera 2390, 15023, Lima, Perú
Bibliografia
  • 1. Alves B., Camello T., De Alvarez C. 2015. A influência da vegetação no conforto térmico para a condição microclimática de Vitória (ES). Ciudades Verdes, 3(8), 1–15.
  • 2. Baryła A., Karczmarczyk A., Bus A. 2018. Role of substrates used for green roofs in limiting rainwater runoff, Journal of Ecological Engineering, 19(5), 86–92. DOI: 10.12911/22998993/91268
  • 3. Beitz M. 2011. Stand persistence of Prestige Buffalograss (Bouteloua Dactyloides) [Synonym Buchloe dactyloides] grown under simulated green roof conditions during summer in Oklahoma, M.Sc. Thesis, Oklahoma State University, Oklahoma.
  • 4. Bevilacqua P., Bruno R., Arcuri N. 2020. Green roofs in a Mediterranean climate: Energy performances based on in-situ experimental data. Renewable Energy, 152(11), 1414–1430. DOI: 10.1016/j.renene.2020.01.085
  • 5. Bevilacqua P., Mazzeo D., Bruno R., Arcuri N. 2016. Experimental investigation of the thermal performance of an extensive green roof in the Mediterranean area. Energy and Building, 122(15), 63–79. DOI: 10.1016/j.enbuild.2016.03.062
  • 6. Blanusa T., Vaz M. Fantozzi F., Vysini E., Li Y., Cameron R. 2013. Alternatives to Sedum on green roofs: Can broad leaf potential plants offer better cooling service. Building and Environment, 59, 99–106. DOI: 10.1016/j.buildenv.2012.08.011
  • 7. Cardoso G., Vecchia F. 2013. Thermal behavior of green roofs applied to a tropical climate. Journal of Construction Engineering, 2013, 1–7. DOI: 10.1155/2013/940386
  • 8. Carneiro T., Guiselini C., Pandorfi H., Lopes J., Loges V. De Souza R. 2015. Condicionamiento térmico primário de instalações rurais por meio de diferentes tipos de cobertura. Engenharia Agrícola. Ambiental, 19(11), 1086–1092. DOI: 10.1590/1807-1929/agriambi.v19n11p1086-1092
  • 9. Cascone S., Coma J., Gagliano A., Pérez G. 2019. The evapotranspiration process in green roofs: A review. Building and Environment, 147, 337–335. DOI: 10.1016/j.buildenv.2018.10.024
  • 10. Cook L., Larsen T. 2021. Towards a performance-based approach for multifunctional green roofs: An interdisciplinary review. Building and Environment, 188(15), 1–12. DOI: 10.1016/j.buildenv.2020.107489
  • 11. Cordoni A. Telhados verdes: Uma análise da influência das espécies vegetais no seu desempenho nacidade de Curitiba, Tese de Mestrado, Universidade Tecnológica Federal do Paraná, Paraná.
  • 12. Cristiano E., Deidda R., Viola F. 2021. The role of green roofs in urban water-energy-food-eco-system nexus: A review. Science of the Total Environment, 756(20), 1–12. DOI: 10.1016/j.scitotenv.2020.143876
  • 13. Davies C., Lafortezza R. 2017. Urban green infrastructure in Europe: is greenspace planning and policy compliant. Land Use Policy, 69, 93–101. DOI: 10.1016/j.landusepol.2017.08.018
  • 14. Erwin J., Hensley J. 2019. Plants with horticultural and ecological attributes for green roofs in a cool, dry climate. HortScience, 54(10), 1703–1711. DOI: 10.21273/HORTSCI13893-19
  • 15. Ferreira P., Pigatto J., Monteiro R. 2016. Diferentes substratos no desenvolvimento de um gramado ornamental para uso em telhados verdes. Ciudades Verdes, 4(10), 81–94.
  • 16. Gwóżdź K., Hewelke E., Żakowicz S., Sas W., Baryła A. 2016. Influence of cyclic freezing and thawing on the hydraulic conductivity of selected aggregates used in the construction of Green roofs. Journal of Ecological Engineering, 17(4), 50–56. DOI: 10.12911/22998993/63957
  • 17. Hitchcock A., Chase A. 2013. Manual of the grasses of the United States, USDA-ARS/University of Nebraska, Lincoln.
  • 18. Hodkinson T. 2018. Evolution and taxonomy of the grasses (Poaceae): A model family for the study of species-rich groups. Annual Plant Reviews, 1, 1–39. DOI: 10.1002/9781119312994.apr0622
  • 19. Jamei E., Wah H., Seyedmahmoudian M., Stojcevski A. 2021. Review on the cooling potential of green roofs in different climates. Science the Total Environment, 791(15), 1–15. DOI: 10.1016/j.scitotenv.2021.148407
  • 20. Jim C. 2012. Effect of vegetation biomass structure on the thermal performance of the tropical green roof. Landscape Ecological Engineering, 8, 173–187. DOI: 10.1007/s11355-011-0161-4
  • 21. Kemp S. 2017. Impact of plant choice and water management on the provision of ecosystem services by green roofs, Ph.D. Thesis, University of Reading, Berkshire.
  • 22. Kuronuma T., Watanabe H., Ishihara T., Kou D., Toushima, Ando M., Shindo S. 2018. CO2 payoff of extensive green roofs with different vegetation species. Sustainability, 10(7), 1–12. DOI: 10.3390/su10072256
  • 23. Kwon Y., Lee D., Lee K. 2019. Determining favorable and unfavorable thermal areas in Seoul using in site measurements: A preliminary step towards developing a smart city. Energy, 12(12), 1–24. DOI: 10.3390/en12122320
  • 24. Köhler M. 2006. Long-term vegetation research on two extensive green roofs in Berlin. Urban Habitats, 4(1), 3–26.
  • 25. FLL. 2018. Landscape Development and Landscaping Research Society e.V., Green roof guidelines-Guidelines for the planning, construction and maintenance of green roofs, FLL, Bonn.
  • 26. Li R., BruneauA., Qu R. 2010.Tissue culture-induced morphological somaclonal variation in St. Augustinegrass [Stenotaphrum secundatum(Walt.) Kuntze]. International Journal of Architectural Research, 129, 96–99. DOI: 10.1111/J.1439-0523.2009.01647.X
  • 27. Lohmann A. 2008. Desempenho higrotérmico de cobertura vegetal inclinada dois protótipos construídos na região de Florianópolis, Tese de Mestrado, Universidade Federal de Santa Catarina, Florianápolis.
  • 28. Lopez N., Barreto W., Rodríguez E., Romero J. 2020. Evaluation of the impact of a green roof on urban runoff using a scale model, Revista Técnica de la Facultad de Ingeniería de la Universidad del Zulia, 1, 26–34. DOI: 10.22209/rt.ve2020a04
  • 29. Lundholm J., MacIvor J., MacDougall A., Ranalli M. 2010. Plant species and functional group combinations affect green roof ecosystem functions. Plos one, 5(3), 1–11. DOI: 10.1371/journal.pone.0009677
  • 30. Madlener R., Sunk Y. 2011. Impacts of urbanization on urban structures and energy demand: What can we learn for urban energy planning and urbanization management?. Sustainable Cities and Society, 1(1), 45–53. DOI: 10.1016/j.scs.2010.08.006
  • 31. Marcato A., Paschoalin J., Philipi T., Coelho B. 2018. The green roof thermal performance evaluation in comparison to asbestos cement tiles applied to light steel frame Brazilian buildings. International Journal of Architectural Research, 12(3), 288–307. DOI: 10.26687/archnet-ijar.v12i3.1709
  • 32. Nagase A., Dunnett N. 2012. Amount of water runoff from different vegetation types on extensive green roofs: effects of plant species, diversity and plant structure. Landscape and Urban Planning, 104 (3–4), 356–363. DOI: 10.1016/j.landurbplan.2011.11.001
  • 33. Naranjo A., Colonia A., Mesa J., Maury H., Maury-Ramírez A. 2020. State of the art green roofs: Technical performance and certifications for sustainable construction. Advances Coatings for Buildings, 10(1), 1–14. DOI: 10.3390/coatings10010069
  • 34. OECD-EC 2020. Organization for Economic Co-operation and Development-European Commission. Cities in the world: A new perspective in urbanization. OECD Publishing, Paris.
  • 35. Osuna-Motta I., Herrera-Cáceres C., López-Bernal O. 2017. Techo plantado como dispositivo de climatización pasiva en el trópico. Revista de Arquitectura, 19(1), 42–55. DOI: 10.14718/RevArq.2017.19.1.1109
  • 36. Padilha J., Giacomelli B., Benche F., Mantovani P., Ecker N., Nogueira M. 2018. Estratégias de mitigação do efeito das ilhas de calor em centros urbanos. XIV Encontro Nacional e Ensino de Paisagismo em Escolas de Arquitetura e Urbanismo no Brasil, 1346–1359.
  • 37. Patton A., Schwartz B., Kenworth K. 2017. Zoysiagrass (Zoysia spp.) history, utilization, and improvement in the United States: A review. Crop Science, 57(1), 37–72. DOI: 10.2135/CROPSCI2017.02.0074
  • 38. Patton A., Volenec J., Reicher Z. 2007. Stolon growth and dry matter partitioning explain differences in Zoysiagrass establishment rate. Crop Science, 47, 1237–1245. DOI: 10.2135/CROPSCI2006.10.0633
  • 39. Sladek B., Henry G., Auld D. 2009. Evaluation of Zoysiagrass genotypes for shade tolerance. HortScience, 44(5), 1447–1451. DOI: 10.21273/HORTSCI.44.5.1447
  • 40. Teutónio I., Silva C., Cruz C. 2018. Eco-solutions for urban environments regeneration: the economic value of green roofs. Journal of Cleaner Production, 199, 121–135. DOI: 10.1016/j.jclepro.2018.07.084
  • 41. Trenholm L., Schiavon M., Unruh J., Shaddox T., Kenworthy K. 2021. St. Augustinegrass for Florida Lawns, Environmental Horticulture Department, Florida.
  • 42. Unruh J., Trenholm L., Cisar J. 2016. Zoysiagrass for Florida Lawns, Environmental Horticulture Department, Environmental Horticulture Department, Florida.
  • 43. Vieria T. 2014. Comparação da variação de temperatura interna de um ambiente cobert com telhado verde e outro com telhado convencional, Tese de Bacharelado, Universidade Tecnológica Federal do Paraná, Paraná.
  • 44. Wheeler T., Osborne J. 2010. Sydney City Council Green Roof Resource Manual, Environa Studio, Sydney.
  • 45. Wherley B., Chandra A., Genovesi A., Kearns M. Pepper T., Thomas J. 2013. Developmental response of St. Augustinegrass cultivars and experimental lines in moderate and heavy shade. HortScience, 48(8), 1047–1051. DOI: 10.21273/HORTSCI.48.8.1047
  • 46. Wherley B., Heitholt J., Chandra A., Skulkaew P. 2014, Supplemental irrigation requirements of Zoysiagrass and Bermudagrass cultivars, Crop Science, 54(4), 1823–1831. DOI: 10.2135/cropsci2013.11.0753
  • 47. Wherley B., Shulkaew P., Chandra A., Genovesi A., Engelke M. 2011. Low-input performance of Zoysiagrass (Zoysia spp.) cultivars maintained under dense tree shade. HortScience, 46(7), 1033–1037. DOI: 10.21273/HORTSCI.46.7.1033
  • 48. Wolf D., Lundholm J. 2008. Water uptake in green roof microcosms: Effects of plant species and water availability. Ecological Engineering, 33(2), 179–186. DOI: 10.1016/j.ecoleng.2008.02.008
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25001302-d970-4c5b-82e2-ad000f2ad630
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.