PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biological monitoring using lichens as a source of information about contamination of mountain with heavy metals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was passive biomonitoring of the mountains of southern Poland. Lichens Hypogymnia physodes were used for the study. Concentrations of the heavy metals Ni, Cu, Zn, Cd and Pb were determined in these lichens. The concentrations were measured by atomic absorption spectrometry (AAS). The analysis of the concentrations of the determined heavy metals in the lichen thallus allowed to determine the places with the highest and the lowest contamination with a given heavy metal in the study area. It was shown that the area of Great Czantoria and Big Soszow is the most contaminated with heavy metals among the investigated areas. The study shows that the transport of analytes with the wind from distant emission sources, low-level emission (coal burning), and traffic have the greatest influence on the level of atmospheric aerosol pollution in the study area.
Rocznik
Strony
155--168
Opis fizyczny
Bibliogr. 72 poz., tab., wykr.
Twórcy
  • Institute of Environmental Engineering and Biotechnology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 51
  • Institute of Biology, University of Opole, ul. Oleska 22, 45-052 Opole, Poland
  • Institute of Environmental Engineering and Biotechnology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 51
Bibliografia
  • [1] Zaikov GE, Weisfeld LI, Lisitsyn EM, Bekuzarova SA. Heavy Metals and other Pollutants in the Environment: Biological Aspects. Palm Bay, Florida, USA: Apple Academic Press; 2017. ISBN: 9781771884372.
  • [2] Murozumi M, Chow TL, Patterson C. Chemical concentrations of pollutant lead aerosols, terrestrial dusts, and sea salts in Greenland and Antarctic snow strata. Geochim Cosmochim Acta. 1969;33:1247-94. DOI: 10.1016/0016-7037(69)90045-3.
  • [3] Chamberlain AC. Fallout of lead and uptake by crops. Atmos Environ. 1983;17:693-706. DOI: 10.1016/0004-6981(83)90416-X.
  • [4] Tiller KG. Heavy Metals in Soils and their Environmental Significance. Advances in Soil Science. New York, NY: Springer; 1989. DOI: 10.1007/978-1-4612-3532-3.
  • [5] Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, et al. Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. In: Environmental Biotechnology: For Sustainable Future. Singapore: Springer; 2019. DOI: 10.1007/978-981-10-7284-0.
  • [6] Kamran S, Shafaqat A, Samra H, Sana A, Samar F, Muhammad B, et al. Heavy metals contamination and what are the impacts on living organisms. Greener J Environ Manage Public Saf. 2013;2(4):172-9. DOI: 10.15580/GJEMPS.2016.1.011916013.
  • [7] Vhahangwele M, Muedi KL. Environmental contamination by heavy metals. Heavy Metals. 2018;10:115-32. DOI: 10.5772/intechopen.76082.
  • [8] Kozak J, Włodarczyk-Makuła M. Ogólna charakterystyka metod biologicznej kontroli jakości środowiska. [General characteristics of biological environmental quality control methods]. LAB Laboratoria, Aparatura, Badania. 2016;21:1-6. Available from: https://bibliotekanauki.pl/articles/273655.
  • [9] Elinder CG, Friberg L, Kjellström T, Nordberg G, Oberdoerster G. et al. Biological monitoring of metals. Geneva: World Health Organization; 1994. Available from: https://apps.who.int/iris/bitstream/handle/10665/62052/WHO_EHG_94.2.pdf?sequence=1&isAllowed=y, Accessed date: 11 June 2022.
  • [10] Conti ME, Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment - a review. Environ Pollut. 2001;114(3):471-92. DOI: 10.1016/S0269-7491(00)00224-4.
  • [11] Blasco M, Domeño C, Nerín C. Lichens biomonitoring as feasible methodology to assess air pollution in natural ecosystems: Combined study of quantitative PAHs analyses and lichen biodiversity in the Pyrenees Mountains. Analyt Bioanalyt Chem. 2008; 391(3):759-71. DOI: 10.1007/s00216-008-1890-6.
  • [12] Świsłowski P, Kříž J, Rajfur M. The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland. Ecol Chem Eng S. 2020;27(2):195-210. DOI: 10.2478/eces-2020-0013.
  • [13] Słonina N, Świsłowski P, Rajfur M. Passive and active biomonitoring of atmospheric aerosol with the use of mosses. Ecol Chem Eng S. 2021;28(2):163-72. DOI: 10.2478/eces-2021-0012.
  • [14] Carreras HA, Pignata ML. Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ Pollut. 2002;117(1). DOI: 10.1016/S0269-7491(01)00164-6.
  • [15] Cortés E. Investigation of air pollution in Chile using biomonitors. J Radioanal Nuclear Chem. 2004;262(1):169-276. DOI: 10.1023/B:JRNC.0000040885.09041.2e.
  • [16] Poličnik H, Batič F, Cvetka RL. Monitoring of short-term heavy metal deposition by accumulation in epiphytic lichens (Hypogymnia physodes (L.) Nyl.). J Atmospher Chem. 2004;49(1):223-30. DOI: 10.1007/s10874-004-1227-6.
  • [17] Jóźwiak MA, Jozwiak M. Bioindication as challenge in modern environmental protection. Ecol Chem Eng S. 2014;21(4):577-91. DOI: 10.1515/eces-2014-0041.
  • [18] Conti ME, Tudino M, Stripeikis J, Cecchetti G. Heavy metal accumulation in the lichen Evernia prunastri transplanted at urban, rural and industrial sites in Central Italy. J Atmospher Chem. 2004;49(1):83-94. DOI: 10.1007/s10874-004-1216-9.
  • [19] Sawicka-Kapusta K, Zakrzewska M, Budłoń G, Hajduk J. Ocena zanieczyszczenia powietrza stacji bazowych ZMŚP metalami ciężkimi i dwutlenkiem siarki w latach 2001-2009 z wykorzystaniem porostu Hypogymnia physodes [Air pollution assessment ZMŚP base stations with heavy metals and sulfur dioxide in 2001-2009 with the use of Hypogymnia physodes l]. Monitoring Środowiska Przyrodniczego. Kielce: Kieleckie Towarzystwo Naukowe; 2010;11:63-71. Available from: https://ios.ujk.edu.pl/wydawnictwa/z11/kapusta_zakrzewska_bydlon_hajduk.pdf, Accessed date: 11 June 2022.
  • [20] Harmens H, Norris DA, Sharps K, Mills G, Alber R, Aleksiayenak Y, et al. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut. 2015;200:93-104. DOI: 10.1016/j.envpol.2015.01.036.
  • [21] Kłos A, Wacławek M, editors. Badania biomonitoringowe na transgranicznym obszarze polsko-czeskim. [Biomonitoring research in the cross-border Polish-Czech area]. Opole: TChIE; 2010. ISBN: 9788391751169.
  • [22] James PW. The effect of air pollutants other than hydrogen fluoride and sulphur dioxide on lichens. In: Ferry BW, Baddeley MS, Hawksworth DL, Editors. Air Pollution and Lichens. London: The Athlone Press: 1973:143-75. Available from: https://www.fs.fed.us/rm/pubs_rm/rm_gtr224.pdf, Accessed date: 11 June 2022.
  • [23] Oksanen J, Läärä E, Zobel K. Statistical analysis of bioindicator value of epiphytic lichens. Lichenologist. 1991;23(2):167-80. DOI: 10.1017/S0024282991000312.
  • [24] Oztetik E, Cicek A. Effects of urban air pollutants on elemental accumulation and identification of oxidative stress biomarkers in the transplanted lichen Pseudovernia furfuracea. Environ Toxicol Chem. 2011;30(7):1629-36. DOI: 10.1002/etc.541.
  • [25] Spagnuolo V, Giordano S, Giordano S. Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotoxicol Environ Saf. 2011;74(5):1434-43. DOI: 10.1016/j.ecoenv.2011.02.011.
  • [26] Sujetovienė G, Galinytė V. Effects of the urban environmental conditions on the physiology of lichen and moss. Atmospher Pollut Res. 2016;7(4):611-8. DOI: 10.1016/j.apr.2016.02.009.
  • [27] De La Cruz ARH, De La Cruz JKH, Tolentino DA, Gioda A. Trace element biomonitoring in the Peruvian Andes Metropolitan Region using Flavoparmelia caperata lichen. Chemosphere. 2018;210:849-58. DOI: 10.1016/j.chemosphere.2018.07.013.
  • [28] Paoli L, Vannini A, Fačkovcová Z, Guarnieri M, Bačkor M, Loppi S. One year of transplant: is it enough for lichens to reflect the new atmospheric conditions? Ecol Indicat. 2018;88:495-502. DOI: 10.1016/j.ecolind.2018.01.043.
  • [29] Massimi L, Conti ME, Mele G, Ristorini M, Astolfi ML, Canepari S. Lichen transplants as indicators of atmospheric element concentrations: a high spatial resolution comparison with PM10 samples in a polluted area (Central Italy). Ecol Indicat. 2019;101:759-69. DOI: 10.1016/j.ecolind.2018.12.051.
  • [30] Rola K, Osyczka P. Temporal changes in accumulation of trace metals in vegetative and generative parts of Xanthoria parietina lichen thalli and their implications for biomonitoring studies. Ecol Indicat. 2019;96:293-302. DOI: 10.1016/j.ecolind.2018.09.004.
  • [31] Abas A, Awang A, Aiyub K. Analysis of heavy metal concentration using transplanted lichen Usnea misaminensis at Kota Kinabalu, Sabah (Malaysia). Appl Ecol Environ Res. 2020;18(1):1175-82. DOI: 10.15666/aeer/1801_11751182.
  • [32] Blasco M, Celia D, Cristina N. Lichens biomonitoring as feasible methodology to assess air pollution in natural ecosystems: Combined study of quantitative PAHs analyses and lichen biodiversity in the Pyrenees Mountains. Anal Bioanalyt Chem. 2008;391(3):759-71. DOI: 10.1007/s00216-008-1890-6.
  • [33] Nimis PL, Scheidegger Ch, Wolseley PA. Monitoring with lichens - monitoring lichens. In: Monitoring with Lichens - Monitoring Lichens. Dordrecht: Springer; 2002. DOI: 10.1007/978-94-010-0423-7_1.
  • [34] Białońska D, Dayan FE. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. J Chem Ecol. 2005;31(12):2975-91. DOI: 10.1007/s10886-005-8408-x.
  • [35] Scerbo R, Ristori T, Possenti L, Lampugnani L, Barale R, Barghigiani C. Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air quality assessment in Pisa Province (Tuscany, Italy). Sci Total Environ. 2002;286(1-3):27-40. DOI: 10.1016/S0048-9697(99)00333-2.
  • [36] Kahraman A, Kaynak G, Gurler O, Yalcin S, Ozturk S, Gundogdu O. Investigation of environmental contamination in lichens of Gökçeada (Imbroz) Island in Turkey. Radiat Measur. 2009;44(2):199-202. DOI: 10.1016/j.radmeas.2009.01.006.
  • [37] Osyczka P, Boroń P, Lenart-Boroń A, Rola K. Modifications in the structure of the lichen Cladonia thallus in the aftermath of habitat contamination and implications for its heavy-metal accumulation capacity. Environ Sci Pollut Res. 2018;25(2):1950-61. DOI: 10.1007/s11356-017-0639-1.
  • [38] Jóźwiak MA. Ectohydricity of lichens and role of cortex layer in accumulation of heavy metals. Ecol Chem Eng A. 2013;20(4):659-76. DOI: 10.2478/eces-2013-0045.
  • [39] Uluozlu OD, Kinalioglu K, Tuzen M, Soylak M. Trace metal levels in lichen samples from roadsides in East Black Sea region, Turkey. Biomed Environ Sci. 2007;20(3):203-7. Available from: https://www.besjournal.com/en/article/id/e0d72daa-04dd-4df0-9af4-e17d0693fe00, Accessed date: 11 June 2022.
  • [40] Galun M, Garty J, Ronen R. Lichens as bioindicators of air pollution. J Plant Taxon Geograp. 1984;38(1):371-83. DOI: 10.1080/00837792.1984.10670312.
  • [41] Garty J, Fuchs C. Heavy metals in the lichen Ramalina duriaei transplanted in biomonitoring stations. Water Air Soil Pollut. 1982;17(2):175-83. DOI: 10.1007/BF00283300.
  • [42] Paoliac L, Bigagli CV, Vannini J, Bruscoli C, Loppi S. Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environ Pollut. 2012;161:70-5. DOI: 10.1016/j.envpol.2011.09.028.
  • [43] Nascimbene J, Tretiach M, Corana F, Lo Schiavo F, Kodnik D, Dainese M, et al. Patterns of traffic polycyclic aromatic hydrocarbon pollution in mountain areas can be revealed by lichen biomonitoring: A case study in the Dolomites (Eastern Italian Alps). Sci Total Environ. 2014;475:90-6. DOI: 10.1016/j.scitotenv.2013.12.090.
  • [44] Bytnerowicz A, Badea O, Barbu I, Fleischer P, Frączek W, Gancz V, et al. New international long-term ecological research on air pollution effects on the Carpathian Mountain forests, Central Europe. Environ Inter. 2003;29(2-3):367-76. DOI: 10.1016/S0160-4120(02)00172-1.
  • [45] Dołęgowska S, Gałuszka A, Migaszewski ZM. Significance of the long-term biomonitoring studies for understanding the impact of pollutants on the environment based on a synthesis of 25-year biomonitoring in the Holy Cross Mountains, Poland. Environ Sci Pollut Res. 2021;28(9):10413-35. DOI: 10.1007/s11356-020-11817-6.
  • [46] Ugulu I, Dogan Y, Baslar S, Varol O. Biomonitoring of trace element accumulation in plants growing at Murat Mountain. Int J Environ Sci Technol. 2012;9(3):527-34. DOI: 10.1007/s13762-012-0056-4.
  • [47] Lee CSL, Li X, Zhang G, Peng X, Zhang L. Biomonitoring of trace metals in the atmosphere using moss (Hypnum plumaeforme) in the Nanling Mountains and the Pearl River Delta, Southern China. Atmospher Environ. 2005;39(3):397-407. DOI: 10.1016/j.atmosenv.2004.09.067.
  • [48] Devkota B, Schmidt GH. Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agricultur Ecos Environ. 2000;78(1):85-91. DOI: 10.1016/S0167-8809(99)00110-3.
  • [49] Zhaoyong Z, Abuduwaili J, Jiang F. Determination of occurrence characteristics of heavy metals in soil and water environments in Tianshan Mountains, Central Asia. Analyt Lett. 2013;46(13):2122-31. DOI: 10.1080/00032719.2013.784919.
  • [50] Becker T, Dierschke H. Vegetation response to high concentrations of heavy metals in the Harz Mountains, Germany. Phytocoenologia. 2008;38(4):255-65. DOI: 10.1127/0340-269x/2008/0038-0255.
  • [51] Alloway BJ. Sources of heavy metals and metalloids in soils. In: Heavy Metals in Soils. Dordrecht: Springer; 2013. DOI: 10.1007/978-94-007-4470-7_2.
  • [52] Gautam PK, Gautam RK, Banerjee S, Chattopadhyaya MC, Pandey JD. Heavy metals in the environment: fate, transport, toxicity and remediation technologies. In: Heavy Metals: Sources Toxicity and Remediation Techniques. Hauppauge, NY, USA: Nova Sci Publishers, Inc.; 2016. ISBN: 9781634847407.
  • [53] Pujari M, Kapoor D. Heavy metals in the ecosystem: Sources and their effects. In: Heavy Metals in the Environment. Amsterdam: Elsevier; 2021. DOI: 10.1016/B978-0-12-821656-9.00001-8.
  • [54] Bradl HB. Sources and origins of heavy metals. In: Interface Science and Technology. Amsterdam: Elsevier; 2005. DOI: 0.1016/S1573-4285(05)80020-1.
  • [55] Saiki M, Chaparro CG, Vasconcellos MBA, Marcelli MP. Determination of trace elements in lichens by instrumental neutron activation analysis. J Radioanal Nuclear Chem. 1997;217(1):111-5. DOI: 10.1007/bf02055358.
  • [56] Richardson DHS, Shore M, Hartree R, Richardson RM. The use of X-ray fluorescence spectrometry for the analysis of plants, especially lichens, employed in biological monitoring. Sci Total Environ. 1995;176(1-3):97-105. DOI: 10.1016/0048-9697(95)04835-9.
  • [57] Studabaker WB, Puckett KJ, Percy KE, Landis MS. Determination of polycyclic aromatic hydrocarbons, dibenzothiophene, and alkylated homologs in the lichen Hypogymnia physodes by gas chromatography using single quadrupole mass spectrometry and time-of-flight mass spectrometry. J Chromatograpy A. 2017;1492:106-16. DOI: 10.1016/j.chroma.2017.02.051.
  • [58] Sha Y, Zhang P, Wang X, Liu J, Huang Y, Li G. Analysis of candidate micro-reference materials of lichen and algae by SRXRF and PIXE. Nuclear Instrum Method Physics Res Section B: Beam Interactions Materials Atoms. 2002;189(1-4):107-12. DOI: 10.1016/S0168-583X(01)01015-1.
  • [59] Coufalík P, Uher A, Zvěřina O, Komárek J. Determination of cadmium in lichens by solid sampling graphite furnace atomic absorption spectrometry (SS-GF-AAS). Environ Monit Assess. 2020;192(4):1-7. DOI: 10.1007/s10661-020-8186-5.
  • [60] Tuncel SG, Yenisoy-Karakas S, Dogangün A. Determination of metal concentrations in lichen samples by inductively coupled plasma atomic emission spectroscopy technique after applying different digestion procedures. Talanta. 2004;63(2):273-7. DOI: 10.1016/j.talanta.2003.10.055.
  • [61] Chant LA, Andrews HR, Cornett RJ, Koslowsky V, Militon JC, Van den Berg GJ, et al. 129I and 36Cl concentrations in lichens collected in 1990 from three regions around Chernobyl. Appl Radiat Isot. 1996;47(9-10):933-7. DOI: 10.1016/S0969-8043(96)00090-5.
  • [62] Paatero J, Jaakkola T, Ikäheimonen TK. Regional distribution of Chernobyl-derived plutonium deposition in Finland. J Radioanal Nucl Chem. 2002;252(2):407-12. DOI: 10.1023/a:1015795028775.
  • [63] Uğur A, Özden B, Saç MM, Yener G, Altmbaş Ü, Kurucu Y, et al. Lichens and mosses for correlation between trace elements and 210Po in the areas near coal-fired power plant at Yatağan, Turkey. J Radioanal Nucl Chem. 2004;259(1):87-92. DOI: 10.1023/b:jrnc.0000015811.68036.69.
  • [64] Chibowski S, Reszka M. Investigation of Lublin town environment contamination by radionuclides and heavy metals with application of Parmeliaceae lichens. J Radioanal Nucl Chem. 2001;247(2):443-6. DOI: 10.1023/A:1006798828071.
  • [65] Paatero J, Jaakkola T, Kulmala S. Lichen (sp. Cladonia) as a deposition indicator for transuranium elements investigated with the Chernobyl fallout. J Environ Radioactiv. 1998;38(2):223-47. DOI: 10.1016/S0265-931X(97)00024-6.
  • [66] Barański MJ. Beskid Śląski: przewodnik. [Silesian Beskid: a guide]. Piastów: Ofic Wydawn Rewasz; 2007. ISBN: 9788381220156.
  • [67] Mika M. Turystyka a przemiany środowiska przyrodniczego Beskidu Śląskiego. [Tourism and changes in the natural environment of the Silesian Beskids]. Krakow: Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego; 2004. ISBN: 8388424386.
  • [68] Figiel S, Janicka-Krzywda U, Krzywda P. Beskid Żywiecki. Przewodnik. [Beskid Zywiecki. Guide.]. Piastów: Ofic Wydawn Rewasz; 2012. ISBN: 8389188597.
  • [69] Nowak J. Porosty Beskidów Wyspowego i Żywieckiego, Pasma Jałowca i Masywu Babiej Góry. [Lichens of the Beskid Wyspowy and Zywiecki, the Jalowiec Range and the Babia Gora Massif]. Monographiae Botanicae 83; Łódź: Uniwersytet Łódzki: 1998. Available from: https://pbsociety.org.pl/journals/index.php/mb/article/view/mb.1998.002/3560.
  • [70] Wertz B, Socha J, Grabczyński S, Szydłowska P, Ochał W, Maj M. Dendrochronologiczna charakterystyka przyrostu świerka pospolitego (Picea abies (L.) Karst.) z terenu Beskidu Śląskiego i Żywieckiego. [Dendrochronological characteristics of radial increments of Norway spruce (Picea abies (L.) Karst.) from the Silesian and Żywiec Beskids]. Acta Agr Silv ser Silv. 2013;51:59-73. Available from: https://www.researchgate.net/publication/261362630_Dendrochronologiczna_charakterystyka_przyrostu_swierka_pospolitego_Picea_abies_L_Karst_z_terenu_Beskidu_Slaskiego_i_Zywieckiego, Accessed date: 11 June 2022.
  • [71] iCE 3000 Series AA Spectrometers Operators Manuals. Cambridge: Thermo Fisher Scientific; 2011. Available from: http://photos.labwrench.com/equipmentManuals/9291-6306.pdf, Accessed date: 11 June 2022.
  • [72] Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke JW, et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ. 218;627:438-49. DOI: 10.1016/j.scitotenv.2018.01.211.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24fff538-8d3f-4466-8c60-7466c9626c38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.