PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrochemical formation of bioactive surface layer on titanium

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Electrochemical oxidation method to form thin gel-like layer and activate titanium surface for calcium phosphate deposition Design/methodology/approach: Titanium was anodised galvanostatically with low current density from cathodic potential in 2 M H 3PO 4 solution up the steady state potential. This treatment produced two-layer surface film with thin (about 100 nm) gel-like phosphate film over the oxide layer with thickness of about 30 nm on the titanium surface. The composition and chemistry of electrochemically treated titanium surfaces were examined by X-ray photoelectron spectroscopy (XPS). The effectiveness of the new treatment was examined by comparing the behavior of treated and untreated titanium when used for biomimetic coating with the Electrochemical Impedance Spectroscopy (EIS) used for this purpose. Findings: A thick Ca-P coating was formed on the treated titanium after immersion in SBF solution and surface morphology was then examined using SEM equipped with EDS facilities. Practical implications: new electrochemical method of coating titanium and its implant alloys with bioactive surface layer is more efficient and faster than the other in practical use. Originality/value: This study continues to support the further investigation of active phosphates for improved orthopedic applications.
Rocznik
Strony
147--150
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, University of Zielona Gora, Podgorna 50, Zielona Gora, Poland
autor
  • Department of Materials Science and Metallurgy, University of Technology, AGH, Al. Mickiewicza 30, Krakow, Poland
autor
  • Department of Mechanical Engineering, University of Zielona Gora, Podgorna 50, Zielona Gora, Poland
Bibliografia
  • [1] W. Chrzanowski, J. Szewczenko, J. Tyrlik-Held, J. Marciniak and J. Zak, Influence of the anodic oxidation on the physicochemical properties of the Ti6Al4V ELI alloy, Journal MaterProcTechnology, 162-163 (2005) 163-168 .
  • [2] T. Peltola, M. Patsi, H. Rahiala, I. Kangasniemi, A. Yli-Urpo, Calcium phosphate induction by sol-gel-derived titania coatings on titanium substrates in vitro. J Biomed Mater Res 41 (1998) 504–10.
  • [3] M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Matsushita, T. Kokubo, T. Nakamura. Osteoinductive porous titanium implants: Effect of sodium removal by dilute HCl treatment, Biomaterials 27 (2006) 2682–2691.
  • [4] O. Suzuki, S. Kamakura, T. Katagiri, M. Nakamura, B. Zhao, Y. Honda, R. Kamijo, Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite, Biomaterials 27 (2006) 2671–2681.
  • [5] M. Zitnansky and L. Caplovic, Effect of the thermomechanical treatment on the structure of titanium alloy Ti6Al4V, Journal of Materials Processing Technology 157-158 (2004) 643-649.
  • [6] Z. Paszenda, J. Tyrlik-Held, Z. Nawrat, J. Żak and K. Wilczek, Usefulness of passive-carbon layer for implants applied in interventional cardiology, Journal of Materials Processing Technology, 157-158 (2004) 399-404
  • [7] [7] T. Hanawa, M. Ota, Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12 (1991) 767.
  • [8] HM Kim, F. Miyaji, T. Kokubo, T. Nakamura, Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 2 (1996) 409–17.
  • [9] A. Stoch,S. Blazewicz, A. Brozek, Method of applying coatings onto surface of biomedical implants, Patent PL 181770 B1, 2001.
  • [10] Q. Zhang, Y. Leng, Electrochemical activation of titanium for biomimetic coating of calcium phosphate, Biomaterials, 26 (2005) 3853-3859.
  • [11] J. Konieczny, L.A. Dobrzański, K. Labisz, J. Duszczyk, The influence of cast method and anodizing parameters on structure and layer thickness of aluminium alloys, Journal of Materials Processing Technology, 157-158 (2004) 718-723.
  • [12] S. Król, L. Ptacek, Z. Zalisz and M. Hepner, Friction and wear properties of titanium and oxidised titanium in dry sliding against hardened C45 steel, Journal of Materials Processing Technology, 157-158 (2004) 364-369.
  • [13] E. Krasicka-Cydzik, Gel-like layer development during formation of thin anodic films on titanium in phosphoric acid solutions, Corrosion Science 46(2004) 2487-2502.
  • [14] E. Krasicka-Cydzik, Method of formation phosphate layers on titanium and its alloys, PL Patent 367556, 2003.
  • [15] E. Krasicka-Cydzik, Formation of thin anodic layers on titanium and its implant alloys in phosphoric acid solutions, Univ.Zielona Gora Press, 2003, ISBN 83-89321-80-7.
  • [16] BC. Yang, M. Uchida, HM Kim, XD Zhang, T. Kokubo, Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25 (2004) 1003–10.
  • [17] T. Albrektsson et al Experimental studies on oxidized implants: a histomorphometrical and biomechanical analysis. J. Appl Osseoint. Res 1 (2000) 21–4.
  • [18] MG. Nooney et al Nucleation and Growth of Phosphate on Metal Oxide Thin Films, Langmuir, 4, 14 (1998) 2751.
  • [19] D.D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, Y.F. Missirlis, Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cel response and on protein adsorption, Biomaterials, 22 (2001) 1241-1251.
  • [20] H. Takahama, HM Kim, T. Kokubo, T. Nakamura, XPS study of the process of apatite formation on bioactive Ti-6Al-4V alloy in simulated body fluid, Sci&Techn Adv Mat 2 (2001) 389-396.
  • [21] Y. Wang, P.M.A.Sherwood, Phosphorus Pentoxide (P2O5) by XPS, Surface Science Spectra, 9 (2002) 159.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24fa4f22-726e-4536-a01f-d30e989ba9b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.