PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Game Strategies of Ship in the Collision Situations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper introduced the basic model of process of safe ship control in a collision situation using a game model with j objects, which includes non-linear state equations and non-linear, time varying constraints of the state variables as well as the quality game control index in the forms of the game integral payment and the final payment. Approximated model of the process control as the model of multi-step matrix game in the form of dual linear programming problem has been adopted here. The Game Ship Control GSC computer program has been designed in the Matlab/Simulink software in order to determine the own ship’s safe trajectory. These considerations have been illustrated with examples of a computer simulation using an GSC program for determining the safe ship's trajectory in real navigational situation. Simulation research were passed for five sets of strategies of the own ship and met ships.
Twórcy
autor
  • Gdynia Maritime University, Gdynia, Poland
Bibliografia
  • 1. Bist, D.S. 2000. Safety and security at sea. Oxford‐New Delhi: Butter Heinemann.
  • 2. Cahill, R.A. 2002. Collisions and thair causes. London: The Nautical Institute.
  • 3 Cockcroft, A.N. & Lameijer, J.N.F. 2006. The collision avoidance rules. Amsterdam‐Tokyo: Elsevier.
  • 4 Cymbal, N. N., Burmaka, I.A. & Tupikov, I.I. 2007. Elastic strategies of the passing ships. Odessa: KP OGT, (in Russian).
  • 5 Engwerda, J.C. 2005. LQ dynamic optimization and differential games. West Sussex: John Wiley & Sons.
  • 6. Fadali, M.S. & Visioli, A. 2009. Digital control engineering. Amsterdam‐Tokyo: Elsevier.
  • 7 Fang, M.C. & Luo, J.H. 2005. The nonlinear hydrodynamic model for simulating a ship steering in waves with autopilot system. Ocean Engineering 11‐12(32):1486‐1502.
  • 8 Fletcher, R. 1987. Practical methods of optimization. New York: John Wiley and Sons.
  • 9 Fossen, T.I. 2011. Marine craft hydrodynamics and motion control. Trondheim: Wiley.
  • 10 Gluver, H. & Olsen, D. 1998. Ship collision analysis. Rotterdam‐Brookfield: A.A. Balkema.
  • 11 Isaacs, R. 1965. Differential games. New York: John Wiley & Sons.
  • 12. Isil Bozma, H. & Koditschek, D.E. 2001. Assembly as a non‐cooperative game of its pieces: Analysis of ID assemblies. Robotica 19:93‐108.
  • 13 Keesman, K.J. 2011. System identification. London‐ NewYork: Springer.
  • 14 Landau, I.D., Lozano, R., M’Saad, M. & Karimi, A. 2011. Adapive control. London‐New York: Springer.
  • 15 Lisowski, J. 2013. The sensitivity of computer support game algorithms of a safe ship control. International Journal of Applied Mathematics and Computer Science 23(2): 439‐446.
  • 16 Lisowski, J. 2013. Optimal and game control algorithms of ship in collision situations at sea. Control and Cybernetics (42)4: 1‐20.
  • 17 Lisowski, J. & Lazarowska, A. 2013. The radar data transmission to computer support system of ship safety. Solid State Phenomena 196: 95‐101.
  • 18 Lisowski, J. 2014. Optimization‐supported decisionmaking in the marine game environment. Solid State Phenomena 210: 215‐222.
  • 19 Lisowski, J. 2014. The characteristics of the matrix game sensitivity of the safe passing of ships at sea. Solid State Phenomena 210: 258‐264.
  • 20 Mehrotra, S. 1992. On the implementation of a primaldual interior point method. SIAM Journal on Optimization 4(2):575‐601.
  • 21 Mesterton‐Gibbons, M. 2001. An introduction to game theoretic modeling. Providence: American Mathematical Society.
  • 22 Millington, I. & Funge, J. 2009. Artificial intelligence for games. Amsterdam‐Tokyo: Elsevier.
  • 23 Modarres, M. 2006. Risk analysis in engineering. Boca Raton: Taylor & Francis Group.
  • 24 Nisan, N., Roughgarden, T., Tardos, E. & Vazirani, V.V. 2007. Algorithmic game theory. New York: Cambridge University Press.
  • 25 Osborne, M.J. 2004. An introduction to game theory. New York: Oxford University Press.
  • 26 Pantoja, J.F.A. 1988. Differential dynamic programming and Newton’s method. International Journal of Control 5(47):1539‐1553.
  • 27 Perez, T. 2005. Ship motion control. London: Springer.
  • 28 Straffin, P.D. 2001. Game theory and strategy. Warszawa: Scholar (in polish).
  • 29 Seghir, M.M. 2012. Safe ship’s control in a fuzzy environment using genetic algorithm. Solid State Phenomena 180: 70‐75.
  • 30 Speyer, J.L. & Jacobson, D.H. 2010. Primer on optimal control theory. Philadelphia: SIAM.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24f769bd-e352-422b-8c77-25acf2481877
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.