
S I L E S I A N U N I V E R S I T Y O F T E C H N O L O G Y P U B L I S H I N G H O U S E

SCIENTIFIC PAPERS OF SILESIAN UNIVERSITY OF TECHNOLOGY 2019

ORGANIZATION AND MANAGEMENT SERIES NO. 139

http://dx.doi.org/10.29119/1641-3466.2019.138.10 https://www.polsl.pl/Wydzialy/ROZ/Strony/Zeszytynaukowe.aspx

SOFTWARE DEVELOPMENT PROJECTS AS AN ENGINE 1

OF GROWTH FOR ORGANIZATION’S BUSINESS VALUES 2

Tomasz KOWALCZYK 3

Warsaw University of Technology, Warsaw; tomasz.kowalczyk@pw.edu.pl, ORCID: 0000-0001-5469-2848 4

Abstract: According to the latest research of The Standish Group only 14% of software 5

development projects provide high satisfaction with high return on value to their users, sponsors 6

and other stakeholders. Also surprising are the results of the correlation study between projects 7

alignment to the organization's strategy and achieved business values. Projects that are less 8

suited to the strategy allow for achieving twice as large business values as projects with high 9

alignment to the strategy. The reason for this phenomenon could be greater scale of innovation 10

of the projects vague and distant from the strategy. However, this is in contradiction with the 11

principles of the project portfolio management which are focused on the alignment between 12

projects and strategies. The paper provides recommendations of how to achieve and deliver 13

business values and activate an engine of growth, which – in opposite to the high level’s 14

strategies – answer to the real and up to date stakeholders' needs. It also shows the change in 15

the way of thinking, propagated by Tom Gilb in the Competitive Engineering and the change 16

from focusing on functions and features to the quantitatively described value improvements. 17

Keywords: planguage, impact estimation, value improvements, competitive engineering. 18

1. Introduction 19

In the second decade of the 21st century The Standish Group (known as research advisory 20

organization that focuses on software project performance) created a new definition of projects’ 21

success called “pure success” that establishes the whole new meaning of successful projects. 22

As the traditional measurement considers projects’ success basing on golden triangle 23

(on time, on budget and on target) and the modern measurement defines it as: on time, on budget 24

and with satisfied customers (regardless to the original scope), the “pure success” measurement 25

doesn’t, in fact, consider any of those set of factors. The new approach allows to call the project 26

as ‘successful’ only when it delivers a high or very high customer satisfaction and high or very 27

high return on value to the organization at the same time (Johnson, 2018). These are the only 28

things that matter here. 29

122 T. Kowalczyk

The results obtained from the CHAOS database containing 25000 records from Fiscal Year 1

2017 shows in the Table 1 that only 14% of examined projects were resolved as successful. 2

Another 67% of projects were resolved as challenged, that means they didn’t meet the highest 3

customer satisfaction nor the highest return of value. 19% of projects were classified as failed 4

that means they have been canceled before being resolved or haven’t been used at all (Johnson, 5

2018). 6

Table 1. 7
Resolution by Pure Measurement 8

Year/Resolution 2013 2014 2015 2016 2017

Successful 16% 15% 17% 17% 14%

Challenged 65% 68% 64% 66% 67%

Failed 19% 17% 19% 17% 19%

Table shows “Pure” resolution of all software projects, 2013-2017, within the CHAOS database. Pure 9
resolution measures only “high value” and “customer satisfaction”. Adapted from: “Decision Latency 10
Theory: It Is All About the Interval” by J. Johnson. Copyright 2018 by The Standish Group International, 11
Incorporated. 12

What is worth noting, is that even the most advanced IT systems will not always meet actual 13

customers needs. The CHAOS Report shows that many of functions and features of software 14

are not being used at all. Moreover, it’s worth to remember, that the more functions and features 15

there are, the more cost and risk projects generate. That’s why customers satisfaction doesn’t 16

necessary mean delivering projects in the original scope. 17

Another metric related to the “pure measurement” is strategic goals defined by the project’s 18

position in relation to the organizational goals. Table 2 shows that 26% of considered projects 19

were successful. It means they are precise or close to the organizational strategy. 56% of 20

projects were challenged, that means they are loose, vague or distant from the organizational 21

strategy. 18% of projects were failed. These results are not surprising until we tried to pair 22

strategic goals with values returned to the organization. Only 20% of "precise" projects 23

delivered high or very high values, while the same levels of values had been delivered by 44% 24

of "distant" projects (Johnson, 2018). 25

Table 2. 26
Resolution by Strategic Goal Versus Value Measurement 27

Goal %
Very High

Value
High Value

Average

Value
Low Value

Very Low

Value

Precise 11% 7% 13% 53% 21% 6%

Close 15% 8% 16% 52% 19% 5%

Loose 21% 12% 22% 47% 15% 4%

Vague 18% 17% 32% 39% 8% 4%

Distant 17% 15% 29% 21% 19% 16%

Failed 18%

Table shows percent of projects in relationship to the strategic goals as measure of success (column 2). 28
Columns 3 to 7 shows the return on value to the strategic goals. Adapted from: “Decision Latency 29
Theory: It Is All About the Interval” by J. Johnson. Copyright 2018 by The Standish Group International, 30
Incorporated. 31

Software Development Projects as an Engine… 123

The CHAOS Report authors tried to consider the meaning of the fact that return of value 1

was smaller when projects were closer to the strategy. Their opinion was that challenged 2

(especially vague and distant) projects are more innovative and are often business disruptive, 3

with higher returns (Johnson, 2018). This phenomenon may also have other reason. 4

In most cases organizational strategy is just a will or even a dream of their founders. Meanwhile, 5

market demand may not match company's services and products which are driven by the 6

strategy. That is why organizations should adapt their offer to the real customers' needs 7

(Ries, 2012). 8

Projects alignment to the strategic goals (and looking wider - to the organizational strategy) 9

is also an issue and subject of project portfolio management, for instance in accordance with 10

The Standard for Portfolio Management issued by Project Management Institute. Basing on 11

PMI definition, an organizational strategy is a bundle of goals and policies showing directions 12

of development. It gives a primary input to portfolio management which acts as the vehicle 13

through which initiatives and investments are undertaken to realize strategic goals and 14

objectives (Project Management Institute, 2017). Referring again to the results of The Standish 15

Group research, we can recognize a really serious problem. Distance between the project's 16

results and strategic objectives doesn't have positive correlation with organizational strategy. 17

Projects that precisely hits the strategy, deliver twice lower value than projects identified as 18

vague or distant, and this contradicts the principles of project portfolio management. 19

Currently implemented IT projects, programs and portfolios both in the sector of companies 20

and governmental organizations confirm phenomena described above in practice. 21

The effectiveness and valence of IT projects has remained at the similar level for over 30 years, 22

despite of improvements and optimizations realized through the software engineering. 23

Such type of work environment is exposed to frequent conflicts between customers and 24

suppliers that lead to increasing losses. The popularity and availability of software will continue 25

to increase in next years and decades. It will be influenced, among others, by the development 26

of the 5G cellular network and the related expansion of phenomena such as big data and 27

artificial intelligence. Therefore, improving the results and values achieved by IT projects is 28

a very important issue. 29

The main objectives of this article are to define the concept of business values and value-30

based approach for activating an engine of growth and managing software development projects 31

delivering quantified benefits for Stakeholders. In order to achieve these goals, the paper is 32

divided into two major parts. First covers basic knowledge about planning language (created 33

by Tom Gilb), called "planguage", which focuses on quantified stakeholder's needs and the 34

related requirements and value improvements. Second part describes key principles for 35

successful requirements, presented in the form of checklist that can help managers in value 36

management during the entire software development lifecycle. 37

124 T. Kowalczyk

2. The Concept of Business Values 1

Nowadays due to the rapidly changing world people cannot rely anymore on their 2

(once a confident) knowledge of how to solve problems similar to ones they had solved before. 3

Stable business, social and IT environments have changed forever (Gilb, 2005). 4

It is no different in the case of software development. Until the mid-sixties of the 5

XX century software had been created by users themselves for their own needs (primarily for 6

scientific purposes) or in close cooperation with end users. In such a homogeneous 7

environment, stakeholder expectations (expressed in the form of functional and non-functional 8

requirements) were well understood. However, the situation changed significantly in the late 9

sixties, when development of computer hardware and programming languages enabled the 10

modeling of much more complex information systems. People discovered the usefulness of the 11

software in completely new fields such as information management or supporting production 12

processes. Unfortunately, most of the implemented projects were unsuccessful. It was the 13

beginning of the so-called "Software Crisis", which made it clear to the engineers that their 14

methods and techniques do not keep up with user’s expectations. At that time engineers and 15

managers began to look for a new way out of the crisis. In the result software engineering has 16

born as a set of new directions, methods and techniques for software development (Jaszkiewicz, 17

1997), that was coincided with the rise of the planning language (called “Planguage”), created 18

by Tom Gilb. 19

2.1. Planning Language, Called “Planguage” 20

Planguage was created as an open and flexible communication and cooperation “platform” 21

for interdisciplinary teams working towards well-documented common purposes. It supports 22

the whole software development process, from requirement specification to product delivery as 23

well as giving opportunity for tailoring specific projects, organizations and cultures in order to 24

find out ‘what works now’ by means of practice, not theory. From team’s perspective planning 25

language helps thinking as engineers and managers, not only as programmers. Thanks to this 26

Planguage allows to concentrate on stakeholder-critical values, instead of focusing only on 27

functions, use cases, and code delivery (Gilb, and Brodie, 2011). 28

2.2. Values and Requirements 29

The main assumption for each project should be achieving Stakeholders’ values (defined 30

as the "benefit we think we get from something"), not delivering defined functionalities. 31

The issue with conventional approach for requirements elicitation and gathering is that it is 32

not close enough to Stakeholder’s values. IT business analysts usually fail to get enough 33

information for calculation of values as well as business Stakeholders frequently fail to justify 34

requirements using values. This shows the greatest danger – a lack of basic information 35

Software Development Projects as an Engine… 125

allowing to engineer and prioritize implementation tasks in order to deliver the highest value, 1

even if the requirements are fulfilled in the meaning of stakeholder's functional and 2

non-functional expectations. Another issue is a specificity of values, which are multi-3

dimensional beings. A given value can be understood on many levels, for instance on financial, 4

environmental, architectural or competitive level. Therefore, using simple prioritization 5

mechanisms such MoSCoW (ie. Must Have, Should Have, Could Have, and Would like to 6

Have) is not enough (Gilb, and Brodie, 2011), because there may encounter a conflict between 7

different levels of values. 8

Lack of consistent definition of the requirements is also an important issue. The most 9

popular and simple classification based on the software engineering assumes that requirements 10

are divided into functional and non-functional groups. However, this is not a complete 11

classification, even without considering the value issue (Gilb, and Brodie, 2011). The concept 12

of requirements types defined in Planguage includes several main categories and few 13

subcategories, as follows: 14

 Vision Requiremets: at the highest level, the future direction for a system. 15

 Function Requirements: what a system has to “do”: the essence of a system, its mission 16

and fundamental functionality. 17

 Performance Requirements: the performance levels that the Stakeholders want – 18

their objectives. How good? These can be further classified as: 19

o Qualities: how well the system performs, for example: usability, availability and 20

customer satisfaction. 21

o Resource Savings: the required improvement in resource utilization: relative 22

economic and other resource savings compared to defined benchmarks. These are 23

known simply as “Savings”. 24

o Workload Capacities: how much the system performs. In other words, the required 25

capacity of the system processes. For example, system peak processing volumes, 26

speeds of execution and data storage capacity. 27

 Resource Requirements: the levels of resources that stakeholders plan to expend to 28

develop and operate a system. Resources have to be balanced against the stakeholders’ 29

perceived values gained from the system functions and the system performance levels. 30

 Design Constraints: these are any design ideas that must be included in the system 31

design. In order to be able to define values that can be measured, it is necessary to define 32

quantified quality requirements. 33

 Condition Constraints: these are any additional constraints to those imposed by the 34

function requirements, the performance requirements, the resource requirements and the 35

design constraints. Condition constraints are often used to capture system-level 36

constraints (for example, “the system must be legal in Europe”) (Gilb, 2005). 37

From the Stakeholders' point of view the performance requirements are the most important 38

for value delivery by far. 39

126 T. Kowalczyk

2.3. Scales of Measure 1

It is a well-known paradigm that management is possible only when the subject is 2

measurable. That is why to achieve anything, quantification and measurement are required. 3

Lack of measurability does not allow to specify precise criteria for judgment of failure or 4

success (Gilb, 2005). This issue was already raised in 1998 by Simon Ramo, who wrote – 5

"No matter how complex the situation, good systems engineering involves putting value 6

measurements on the important parameters of desired goals and performance of pertinent data, 7

and of the specifications of the people and equipment and other components of the system" 8

(Ramo, and St. Clair, 1998). 9

A scale of measure is the heart of a scalar specification and essential to support all the 10

project's targets and constraints. The scalar attributes (such as performance and resources) 11

are best measured in terms of defined conditions, otherwise they lose its meaning (Gilb, 2005). 12

Below, there are examples of the scales of measure, presented in the Table 3. 13

Table 3. 14
Examples of Scales of Measure 15

Performance Effect of Change in Performance Scale of Measure

Customer Satisfaction Fewer letters of complaint

Number of letters complaining

about a defined [Product] received

within a defined [Time Period]

Customer Satisfaction Fewer returned goods

Percentage of defined [Product]

returned within defined [Time

Period after Purchase] with

defined [Customer Issue]

Environmentally Friendly
Improved rating as measured on

international standard

Number of defined [Product Type]

failing defined [Test] within a

defined [Time Period]

User-friendly Fewer errors made

Percentage of defined [Transaction

Type] with defined [Error] input

by defined [User Type]

User-friendly
Faster time for completion of

transactions

Time in minutes for a defined

[Transaction] to be carried out to

<satisfactory> completion

Restful Ambience Calming, relaxing effect

Percentage of users of defined

[User Type] agreeing that defined

[Room Space] was <restful>

Reliability Fewer breakdowns
Mean Time Between Repair

(MTBR)

Staff Satisfaction Lower rate of staff turnover
Number of staff of defined [Job

Description Response]

Predictability
Less variance in time to initial

response

Percentage of service calls of

defined [Service Type] exceeding

<initial response> within defined

[Time Period]

Adapted from: “Competitive Engineering – A handbook for systems engineering, requirements 16
engineering and software engineering using planguage” by T. Gilb. Copyright 2005 by Elsevier 17
Butterworth-Heinemann. 18

 19

Software Development Projects as an Engine… 127

2.4. Epilogue of Planguage 1

Planning language is not only a value management tool. It is also a platform for precise 2

communication. Thanks to predefined structure, including parameters, concepts and icons 3

(selected examples are given in the Table 4) it allows to express thoughts in the way similar to 4

the markup languages (like XML) but in the easier way, available even for rookie users. 5

Table 4. 6
Description of some of the main generic Planguage parameters, concepts and icons 7

Concept of

Parameter
Meaning Used for Note also

Planguage Term
A term that is part of

Planguage
Structuring specifications

Glossary contains a set of

Planguage terms

User-Defined

Term
A term defined by users

Identifying “local” user

terms

It should be short and

descriptive

Tag:

An identifier for a

Planguage term or a user-

defined term

Providing a unique “local”

reference to a term

Hierarchical tags can be

used. These can be used in

full (very explanatory) or

abbreviated depending on

context

Gist:
A rough, informal, brief

description or summary

Getting consensus initially.

Summarizing finally

Usually not a precise,

detailed or complete

definition. For a scalar

parameter, “Ambition” can

be used to express the

ambition level

Stakeholder:

Any person or

organizational group with

an interest in, or ability to

affect, the system or its

environment

Understanding who has to

be consulted or considered

when specifying

requirements

Usually a set of several

different stakeholders is

identified

Status:
The approval level of the

specification

Identifying which version of

the specification is being

used

For example: “Status:

Draft.” See glossary for

additional terms to express

approval level

Source: <-

Where exactly a given

specification or part of it,

originated

Used to enable readers to

quickly and accurately

check specifications at their

origin

The icon for source is “<-“.

Usually the icon is used in

specifications, rather than

the term “Source”

Assumption:

Any assumption that should

be checked to see if it is still

applies and/or is still correct

Risk Analysis

Other more precise

parameters should be used if

possible, for example,

Dependency, Risk

Fuzzy <...>

Identifies a term as

currently defective and in

need of improvement

Alerting the reader and

author that the term is not

trustworthy yet or lacks

detail

The keyed icon for fuzzy is

“<imprecise word>”. The

“<>” icon is always used

Adapted from: “Competitive Engineering – A handbook for systems engineering, requirements 8
engineering and software engineering using planguage” by T. Gilb. Copyright 2005 by Elsevier 9
Butterworth-Heinemann. 10

 11

128 T. Kowalczyk

3. The Key Principles for Successful Requirements 1

Project management through Stakeholder's values requires an approach based on 2

continuous improvements. Software quality and its business benefits refer not only to the testing 3

phase. That is why the values should be considered at all stages of software development 4

lifecycle. In order to do this, every project manager or product owner should act in accordance 5

with the following principles: 6

 Understand top level critical objectives. 7

 Think stakeholders: not just users and customers! 8

 Focus on the required system quality, not just its functionality. 9

 Quantify quality requirements as a basis for software engineering. 10

 Don’t mix ends and means. 11

 Capture explicit information about value. 12

 Ensure there is “rich specification”: requirement specifications need more information 13

than the requirement itself! 14

 Carry out specification quality control (SQC). 15

 Consider the total lifecycle – not just a focus on software. 16

 Recognize that requirements’ change: use feedback and update requirements 17

(Gilb, and Brodie, 2011). 18

3.1. Understand Top Level Critical Objectives 19

Understanding the top-level critical objectives, sometimes called as “high-level 20

requirements” is a crucial thing for the project team, and it’s unfortunately often being ignored. 21

Those objectives, to be properly understood, have to be well-clarified and this is another case 22

many project teams struggle with. Each of requirements must be clear, measurable and 23

quantified (Gilb, and Brodie, 2011). 24

3.2. Think Stakeholders 25

Requirements are often being focused on user and customer needs, while many project 26

teams don’t take into consideration any other Stakeholders. It’s worth to remember, 27

that Stakeholders are not only customers and end-users; it’s also anyone that has an interest in 28

the project (e.g. Management, IT development and maintenance and etc.) (Gilb, and Brodie, 29

2011). 30

 31

Software Development Projects as an Engine… 129

3.3. Focus on the System Quality, not just its Functionality 1

System quality is an important part of every IT project. It includes availability, usability, 2

portability - basically, it’s any quality that a particular Stakeholder may need. However, 3

as the functionality of the system attracts an attention and be easier to understand, the system 4

quality (especially quantified) seems to be often ignored, while it can be major driver for the 5

project and business success (Gilb, and Brodie, 2011). 6

3.4. Quantify Quality Requirements 7

Every well-clarified requirement has to be quantified properly. Far too often people don’t 8

remember about the power of numbers. Nice-sounding words (f.e. “much better performance 9

and amazing user experience”) will never be a good replacement for accurate numbers that 10

provides the opportunity to measure and track progress of the project (Gilb, and Brodie, 2011). 11

3.5. Don’t Mix Ends and Means 12

People often confuse the solution with their real need, while in the most cases it’s not the 13

same thing. A particular need can be solved in many ways. Narrowing it to just one solution is 14

a big mistake: first of all, people still struggle with defining their actual needs, so they can’t 15

possibly find the solution, when they don’t even know what the actual problem is. Second – 16

proposed solution may not necessarily answer for the real problem and may have unpredictable 17

side effects (Gilb, and Brodie, 2011). 18

3.6. Capture Explicit Information About Value 19

Expressing values during the definition of requirements is a very difficult activity. 20

It requires a mental journey to a higher level - above tangible things. People should ask 21

themselves why they need particular things and the answer should be very deep, not only 22

describe application design (Gilb, and Brodie, 2011). 23

3.7. Ensure There Is “Rich Specification” 24

Even the best-defined requirement itself is not enough. Equally important is deep 25

specification of its background as it may contain the knowledge about things such as: who wants 26

the requirement and when, what would be the impact of fulfilling this requirement and so on. 27

This information allows to prioritize the requirement, judge its value and risk, etc 28

(Gilb, and Brodie, 2011). 29

3.8. Carry Out Specification Quality Control 30

Right after specifying the requirements, the quality control should be carried out. 31

None requirement should be released for use without it. There are three rules that have to be 32

implemented in every requirement: “testable”, “unambiguous to readers” and “no optional 33

130 T. Kowalczyk

designs present”. The requirement that doesn’t meet those rules, should be redefined, so it could 1

really do its job (Gilb, and Brodie, 2011). 2

3.9. Consider the Total Lifecycle 3

Taking the entire software development process into consideration is crucial for avoiding 4

problems with cost of maintenance and future development of the system. For instance, 5

if we want to have a possibility to change a performance or capacity of the system in real time, 6

it has to be designed into the system (Gilb, and Brodie, 2011). 7

3.10. Recognize That Requirements’ Change 8

Already specified requirement is not a “being” that never can change, people cannot stick 9

to it no matter what. It’s important to use software development methods, such as agile, 10

to collect feedback from Stakeholders and fit the requirements to Stakeholders’ expectations 11

and actual value. Because of different factors (ie. politics, economy, technology change) 12

requirements may evolve during time and it’s important to accept it instead of narrowing it 13

down to tunnel vision (Gilb, and Brodie, 2011). 14

4. Conclusions 15

The modern IT project management landscape is dominated by agile methodologies like 16

SCRUM, focused on the software development processes and functional requirements. 17

Main assumptions of this philosophy are valuable, because they take into consideration not only 18

technical issues but also the specificity of human behavior and relationships with other people. 19

These phenomena led to increased efficiency and work's quality of the development teams. 20

Unfortunately, it did not affect, nor took into consideration, the values that projects bring to the 21

organizations. 22

The CHAOS Report shows that in 2017 only 14% of examined projects delivered high and 23

very high values and high and very high customer’s satisfaction. This is a result much below 24

expectations. Expected values will not also be achieved by further optimization of the 25

technology and development processes. Nowadays, the main problem is lack of a description 26

of measurable business needs (so-called qualities), which are the basis for developing the 27

specification of functional and non-functional requirements. Such description of top-level 28

critical objectives as "Will provide a much more efficient user experience" or "A primary goal 29

is to provide a much more productive system development environment then was previously 30

the case" makes it impossible in practice to determine the functionalities that will certainly meet 31

Stakeholder's expectations. 32

Software Development Projects as an Engine… 131

Performance requirements should contain at least: description, scale of measure, 1

current (quantified) status of the need, expected value of the need and time of delivery 2

(Figure 1). 3

 4

Figure 1. Goal’s definition. Adapted from: own study. 5

Such set of parameters gives a chance to answer for the most important question in modern 6

IT projects – "How will we understand that we have succeeded?". 7

References 8

1. Gilb, T. (2005). Competitive Engineering – A handbook for systems engineering, 9

requirements engineering and software engineering using planguage. Oxford: Elsevier 10

Butterworth-Heinemann. 11

2. Gilb, T., Brodie, L. (2011). What’s fundamentally wrong? Improving our approach towards 12

capturing value in requirements specification. Core, 4, 26-36. 13

3. Jaszkiewicz, A. (1997). Inżynieria oprogramowania. Gliwice: Wydawnictwo Helion. 14

4. Johnson, J. (2018). Chaos Report, Decision Latency Theory: It’s All About the Interval. 15

Boston: The Standish Group International, Inc. 16

5. Project Management Institute (2017). The Standard for Portfolio Management. Newtown 17

Square: Project Management Institute, Inc. 18

6. Ramo, S., and St. Clair, R. (1998). The Systems Approach: Fresh Solutions to Complex 19

Civil Problems through Combining Science and Practical Common Sense. Anaheim: 20

KNI Incorporated. 21

7. Ries, E. (2012). Metoda Lean Startup. Gliwice: Wydawnictwo Helion. 22

