PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trends and challenges in unmanned surface vehicles (USV): From survey to shipping

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Autonomy and unmanned systems have evolved significantly in recent decades, becoming a key routine component for various sectors and domains as an intrinsic sign of their improvement, the ocean not being an exception. This paper shows the transition from the research concept to the commercial product and related services for Unmanned Surface Vehicles (USV). Note that it has not always been easy in most cases due to the limitations of the technology, business, and policy framework. An overview of current trends in USV technology looking for a baseline to understand the sector where some experiences of the authors are shown in this work. The analysis presented shows a multidisciplinary approach to the field. USV's capabilities and applications today include a wide range of operations and services aimed at meeting the specific needs of the maritime sector. This important consideration for USV has yet to be fully addressed, but progress is being made.
Twórcy
autor
  • Oceanic Platform of the Canary Islands, Las Palmas, Spain
autor
  • University of La Laguna, Tenerife, Spain
autor
  • University of La Laguna, Tenerife, Spain
autor
  • Technological Center for Marine Sciences, Las Palmas, Spain
Bibliografia
  • 1. Autonomous and Remotely Operated Ships: http://rules.dnvgl.com.
  • 2. Barrera, C., Morales, T., Moran, R., Caudet, E., Marrero, R., Cianca, A., Alcaraz, D., Campuzano, F., Fernandes, C., de Sousa, J.T.B., Rueda, M.J., Llinas, O.: Expanding operational ocean-observing capabilities with gliders across the Macaronesia region. Presented at the AGU - Ocean Sciences Meeting 2020 , San Diego, CA, USA February 16 (2020).
  • 3. Benjamin, M.R., Curcio, J.A.: COLREGS-based navigation of autonomous marine vehicles. In: 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578). pp. 32–39 (2004). https://doi.org/10.1109/AUV.2004.1431190.
  • 4. Bertram, V.: Unmanned surface vehicles-a survey. Skibsteknisk Selskab, Copenhagen, Denmark. 1, 1–14 (2008).
  • 5. Bibuli, M., Caccia, M., Lapierre, L., Bruzzone, G.: Guidance of Unmanned Surface Vehicles: Experiments in Vehicle Following. IEEE Robotics & Automation Magazine. 19, 3, 92–102 (2012). https://doi.org/10.1109/MRA.2011.2181784.
  • 6. Bratić, K., Pavić, I., Vukša, S., Stazić, L.: Review of Autonomous and Remotely Controlled Ships in Maritime Sector. Trans. Marit. Sci. 8, 2, 253–265 (2019). https://doi.org/10.7225/toms.v08.n02.011.
  • 7. Breivik, M.: Topics in guided motion control of marine vehicles. Norwegian University of Science and Technology (2010).
  • 8. Bremer, R.H., Cleophas, P.L., Fitski, H.J., Keus, D.: Unmanned surface and underwater vehicles. DTIC Document, TNO Defence Security and Safety (Netherlands) (2007).
  • 9. Burmeister, H.-C., Bruhn, W., Rødseth, Ø.J., Porathe, T.: Autonomous Unmanned Merchant Vessel and its Contribution towards the e-Navigation Implementation: The MUNIN Perspective. International Journal of eNavigation and Maritime Economy. 1, 1–13 (2014). https://doi.org/10.1016/j.enavi.2014.12.002.
  • 10. Caccia, M.: Autonomous Surface Craft: prototypes and basic research issues. In: 2006 14th Mediterranean Conference on Control and Automation. pp. 1–6 (2006). https://doi.org/10.1109/MED.2006.328786
  • 11.Caccia, M., Bibuli, M., Bono, R., Bruzzone, G.: Basic navigation, guidance and control of an Unmanned Surface Vehicle. Autonomous Robots. 25, 4, 349–365 (2008). https://doi.org/10.1007/s10514-008-9100-0.
  • 12. Campbell, S., Naeem, W., Irwin, G.W.: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annual Reviews in Control. 36, 2, 267–283 (2012). https://doi.org/10.1016/j.arcontrol.2012.09.008.
  • 13. Casalino, G., Turetta, A., Simetti, E.: A three-layered architecture for real time path planning and obstacle avoidance for surveillance USVs operating in harbour fields. In: OCEANS 2009-EUROPE. pp. 1–8 (2009). https://doi.org/10.1109/OCEANSE.2009.5278104.
  • 14. Chen, S.-L., Cheng, H.B.: Modeling and simulation based on fuzzy neural network for unmanned surface vehicle. Ship Science & Technology. 32, 11, 134–136 (2010).
  • 15. Cruz, N.A., Alves, J.C.: Autonomous sailboats: An emerging technology for ocean sampling and surveillance. In: OCEANS 2008. pp. 1–6 (2008). https://doi.org/10.1109/OCEANS.2008.5152113.
  • 16. Dai, S., Wang, C., Luo, F.: Identification and Learning Control of Ocean Surface Ship Using Neural Networks. IEEE Transactions on Industrial Informatics. 8, 4, 801– 810 (2012). https://doi.org/10.1109/TII.2012.2205584.
  • 17. Daniel, T., Manley, J., Trenaman, N.: The Wave Glider: enabling a new approach to persistent ocean observation and research. Ocean Dynamics. 61, 10, 1509–1520 (2011). https://doi.org/10.1007/s10236-0110408-5.
  • 18. DNV GL. – ReVolt: Next Generation Short Sea Shipping, https://www.dnvgl.com/news/.
  • 19. Do, K.D.: Practical control of underactuated ships. Ocean Engineering. 37, 13, 1111–1119 (2010). https://doi.org/10.1016/j.oceaneng.2010.04.007.
  • 20. Du, J., Yang, Y., Wang, D., Guo, C.: A robust adaptive neural networks controller for maritime dynamic positioning system. Neurocomputing. 110, 128–136 (2013). https://doi.org/10.1016/j.neucom.2012.11.027.
  • 21. Fer, I., Peddie, D.: Near-surface oceanographic measurements using the Sail Buoy: test deployment off Grand Canaria. Christian Michelsen Research AS, Bergen (2012).
  • 22 Ferreira, H., Almeida, C., Silva, H., Almeida, J.M., Silva, E., Martins, A.: ROAZ and ROAZ II Autonomous Surface Vehicle Design and Implementation. Presented at the International Lifesaving Congress , La Coruna, Spain (2007).
  • 23.Ferreira, H., Martins, R., Marques, E., Pinto, J., Martins, A., Almeida, J., Sousa, J., Silva, E.P.: SWORDFISH: an Autonomous Surface Vehicle for Network Centric Operations. In: OCEANS 2007 - Europe. pp. 1–6 (2007). https://doi.org/10.1109/OCEANSE.2007.4302467.
  • 24. First Test Area for Autonomous Ships Opened in Finland: https://worldmaritimenews.com.
  • 25. First Unmanned Vessel Joins UK Ship Register: https://worldmaritimenews.com.
  • 26. Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley (1994).
  • 27. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Ltd (2011).
  • 28. Gu, Y., Goez, J.C., Guajardo, M., Wallace, S.W.: Autonomous vessels: state of the art and potential opportunities in logistics. International Transactions in Operational Research. 28, 4, 1706–1739 (2021). https://doi.org/10.1111/itor.12785.
  • 29. Guidelines for Autonomous Shipping: https://www.bureauveritas.jp.
  • 30. Hine, R., Willcox, S., Hine, G., Richardson, T.: The Wave Glider: A Wave-Powered autonomous marine vehicle. In: OCEANS 2009. pp. 1–6 (2009). https://doi.org/10.23919/OCEANS.2009.5422129.
  • 31. IMO: Interim guidelines for MASS trials. , London, UK (2018).
  • 32. IMO: Regulatory scoping exercise for the use of maritime autonomous surface ships (MASS). , London, UK (2018).
  • 33. MO: Takes First Steps to Address Autonomous Ships, http://www.imo.org/en/, last accessed 2021/02/02.
  • 34. iXblue-DriX USV: Rethinking the Traditional Model fo Offshore Operations, https://www.hydrointernational.com/content/article/rethinking-thetraditional-model-for-offshore-operations, last accessed 2021/04/25.
  • 35. Jing, W., Liu, C., Li, T., Rahman, A.B.M.M., Xian, L., Wang, X., Wang, Y., Guo, Z., Brenda, G., Tendai, K.W.: Path Planning and Navigation of Oceanic Autonomous Sailboats and Vessels: A Survey. Journal of Ocean University of China. 19, 3, 609–621 (2020). https://doi.org/10.1007/s11802-020-4144-7.
  • 36. Johnston, P., Poole, M.: Marine surveillance capabilities of the AutoNaut wave-propelled unmanned surface vessel (USV). In: OCEANS 2017 - Aberdeen. pp. 1–46 (2017). https://doi.org/10.1109/OCEANSE.2017.8084782.
  • 37. Karlis, T.: Maritime law issues related to the operation of unmanned autonomous cargo ships. WMU Journal of Maritime Affairs. 17, 1, 119–128 (2018). https://doi.org/10.1007/s13437-018-0135-6.
  • 38. Karvonen, H., Martio, J.: Human Factors Issues in Maritime Autonomous Surface Ship Systems Development. In: SINTEF Proceedings. SINTEF Academic Press (2019).
  • 39. Kim, M., Joung, T.-H., Jeong, B., Park, H.-S.: Autonomous shipping and its impact on regulations, technologies, and industries. null. 4, 2, 17–25 (2020). https://doi.org/10.1080/25725084.2020.1779427.
  • 40. Komianos, A.: The Autonomous Shipping Era. Operational, Regulatory, and Quality Challenges. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 12, 2, 335– 348 (2018). https://doi.org/10.12716/1001.12.02.15.
  • 41.Lambert, J., Manley, J.: Development of Unmanned Maritime Vehicle (UMV) Standards, An Evolving Trend. Sea Technology. 48, 12, (2007).
  • 42.Larson, J., Bruch, M., Ebken, J.: Autonomous navigation and obstacle avoidance for unmanned surface vehicles. Presented at the Proc.SPIE May 9 (2006). https://doi.org/10.1117/12.663798.
  • 43. Lee, S.-M., Kwon, K.-Y., Joh, J.: A Fuzzy Logic for Autonomous Navigation of Marine Vehicles Satisfying COLREG Guidelines. International Journal of Control, Automation, and Systems. 2, 2, 171–181 (2004).
  • 44. Liu, Y., Bucknall, R.: Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Engineering. 97, 126–144 (2015). https://doi.org/10.1016/j.oceaneng.2015.01.008.
  • 45. Liu, Z., Zhang, Y., Yu, X., Yuan, C.: Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control. 41, 71–93 (2016). https://doi.org/10.1016/j.arcontrol.2016.04.018.
  • 46. Manley, J.E.: Unmanned surface vehicles, 15 years of development. In: OCEANS 2008. pp. 1–4 (2008). https://doi.org/10.1109/OCEANS.2008.5152052.
  • 47. Marichal, G.N., Acosta, L., Moreno, L., Méndez, J.A., Rodrigo, J.J., Sigut, M.: Obstacle avoidance for a mobile robot: A neuro-fuzzy approach. Fuzzy Sets and Systems. 124, 2, 171–179 (2001). https://doi.org/10.1016/S0165-0114(00)00095-6.
  • 48. Marichal, G.N., Hernández, A., Rojas, J.A., Melón, E., Rodríguez, J.A., Padrón, I.: Sistema Inteligente de apoyo a maniobras de grandes buques en puertos. Revista Iberoamericana de Automática e Informática Industrial RIAI. 13, 3, 304–309 (2016). https://doi.org/10.1016/j.riai.2016.03.005.
  • 49. Maritime Autonomous Surface Ships UK Code of Practice: https://www.maritimeuk.org.
  • 50 MARS: Mayflower Autonomous Research Ship. NMIO Technical Bulletin. 10, 7–8 (2015).
  • 51. Matía, F., Marichal, G.N., Jiménez, E.: Fuzzy Modeling and Control: Theory and Applications. Atlantis Press, Paris (2014).
  • 52. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning. Springer, Berlin, Heidelberg (1983).
  • 53. Motwani, A.: A survey of uninhabited surface vehicles. (2012).
  • 54.Munim, Z.H.: Autonomous ships: a review, innovative applications and future maritime business models. null. 20, 4, 266–279 (2019). https://doi.org/10.1080/16258312.2019.1631714.
  • 55. Naeem, W., Sutton, R., Xu, T.: An integrated multisensor data fusion algorithm and autopilot implementation in an uninhabited surface craft. Ocean Engineering. 39, 43–52 (2012). https://doi.org/10.1016/j.oceaneng.2011.11.001.
  • 56. NAVANTIA. USV Vendaval: https://www.innovaspain.com/navantia-barcovendaval-ceuta/.
  • 57. Nilsson, N.J.: Principles of Artificial Intelligence. Springer-Verlag, Berlin Heidelberg (1982).
  • 58. Ocean Aero S10: UST-Magazine. 9, 22–31 (2015).
  • 59. Ocean Infinity: Armada Fleet, https://oceaninfinity.com/marine-robotics/.
  • 60. Perera, L.P.: Autonomous Ship Navigation Under Deep Learning and the Challenges in COLREGs. Presented at the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering September 25 (2018). https://doi.org/10.1115/OMAE2018-77672.
  • 61. Poikonen, J., Hyvonen, M., Kolu, A., Jokela, T., Tissari, J., Paasio, A.: Remote and autonomous ships – The Next Steps, https://www.rolls-royce.com.
  • 62. Polvara, R., Sharma, S., Wan, J., Manning, A., Sutton, R.: Obstacle Avoidance Approaches for Autonomous Navigation of Unmanned Surface Vehicles. Journal of Navigation. 71, 1, 241–256 (2018). https://doi.org/10.1017/S0373463317000753.
  • 63. Porathe, T., Prison, J.: Situation awareness in remote control centres for unmanned ships. Presented at the Human Factors in Ship Design & Operation , London, UK (2014).
  • 64. Praczyk, T.: Neural anti-collision system for Autonomous Surface Vehicle. Neurocomputing. 149, 559–572 (2015). https://doi.org/10.1016/j.neucom.2014.08.018.
  • 65. R dseth, Ø.J.: From concept to reality: Unmanned merchant ship research in Norway. In: 2017 IEEE Underwater Technology (UT). pp. 1–10 (2017). https://doi.org/10.1109/UT.2017.7890328.
  • 66. Remote and Autonomous Ship: The next steps. AAWA Position Paper © Rolls-Royce, London, UK (2016).
  • 67. Roberts, G.N., Sutton, R.: Advances in Unmanned Marine Vehicles. IET Digital Library (2006). https://doi.org/10.1049/PBCE069E.
  • 68. Rolls-Royce: Rolls-Royce Opens Autonomous Ship Research and Development Centre in Finland. , London, UK (2021).
  • 69. Rolls-Royce and Finferries Demonstrate World’s First Fully Autonomous Ferry: https://www.rollsroyce.com/media/press-releases/2018/03-12-2018.
  • 70. Safety4Sea: Yara Birkeland to start sailing during 2021, https://safety4sea.com/yara-birkeland-to-start-sailingduring-2021/, last accessed 2021/04/25.
  • 71. Saildrone: ATL2MED international scientifictechnological mission launched – Plataforma Oceánica de Canarias, https://www.plocan.eu/en/saildroneatl2med-international-scientific-technological-missionlaunched/, last accessed 2021/04/25.
  • 72. Sea Proven: Sphyrna 70 - Unmanned Surface Vehicle, http://www.seaproven.com/nos-realisations/sphyrna/, last accessed 2021/04/25.
  • 73. SEA-KIT: Complete First ever International Commercial Unmanned Transit, http://www.oceannews.com.
  • 74. Śmierzchalski, R., Kolendo, P.: Ship Evolutionary Trajectory Planning Method with Application of Polynomial Interpolation. In: Weintrit, A. (ed.) Activities in Navigation. CRC Press, London, UK (2015).
  • 75. Song, R.: Path planning and bi-directional communication for unmanned surface vehicle. (2014).
  • 76. Statheros, T., Howells, G., Maier, K.M.: Autonomous Ship Collision Avoidance Navigation Concepts, Technologies and Techniques. Journal of Navigation. 61, 1, 129–142 (2008). https://doi.org/10.1017/S037346330700447X.
  • 77. Sutton, R., Sharma, S., Xao, T.: Adaptive navigation systems for an unmanned surface vehicle. null. 10, 3, 3– 20 (2011). https://doi.org/10.1080/20464177.2011.11020248.
  • 78. UTEK Unmanned Solutions for Maritime Applications: https://www.plocan.eu/la-direccion-general-de-lamarina-mercante-admite-a-tramite-el-primerabanderamiento-en-espana-de-una-embarcacionautonoma-no-tripulada/.
  • 79. Verfuss, U.K., Aniceto, A.S., Harris, D.V., Gillespie, D., Fielding, S., Jiménez, G., Johnston, P., Sinclair, R.R., Sivertsen, A., Solbø, S.A., Storvold, R., Biuw, M., Wyatt, R.: A review of unmanned vehicles for the detection and monitoring of marine fauna. Marine Pollution Bulletin. 140, 17–29 (2019). https://doi.org/10.1016/j.marpolbul.2019.01.009.
  • 80. Wright, R.G.: Unmanned and Autonomous Ships : An Overview of MASS. Routledge (2020). https://doi.org/10.1201/9780429450655.
  • 81. Wróbel, K., Montewka, J., Kujala, P.: Towards the assessment of potential impact of unmanned vessels on maritime transportation safety. Reliability Engineering & System Safety. 165, 155–169 (2017). https://doi.org/10.1016/j.ress.2017.03.029.
  • 82. XOCEAN XO-450: UST-Magazine. 22, 22–32 (2018).
  • 83.Xu, T., Sutton, R., Sharma, S.: A multi-sensor data fusion navigation system for an unmanned surface vehicle. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 221, 4, 167–182 (2007). https://doi.org/10.1243/14750902JEME72.
  • 84. Yan, R., Pang, S., Sun, H., Pang, Y.: Development and missions of unmanned surface vehicle. Journal of Marine Science and Application. 9, 4, 451–457 (2010). https://doi.org/10.1007/s11804-010-1033-2.
  • 85. Yara Birkeland: Rina, https://www.rina.org.uk/yarabirkeland.html.
  • 86. Zhang, D., Cronin, M.F., Meinig, C., Farrar, J.T., Jenkins, R., Peacock, D., Keene, J., Sutton, A., Yang, Q.: Comparing Air-Sea Flux Measurements from a New Unmanned Surface Vehicle and Proven Platforms During the SPURS-2 Field Campaign. Oceanography. 32, 2, (2019). https://doi.org/10.5670/oceanog.2019.220.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24f2fb46-6c35-41e8-afb9-66c72c4999af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.