PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational fluid dynamic as an engineering tool for the reconstruction of blood hemodynamics and spatial configuration before and after endoleak appearance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Endovascular aneurysm repair (EVAR) has emerged as the primary treatment option for abdominal aortic aneurysm (AAA) surgeries. The intricate hemodynamics within the AAA region often leads to various complications in post-stent-graft placement, such as endoleaks. Thus, the objective of this study was to assess the risk of stent-graft migration attributable to the appearance of endoleaks, employing spatial configuration analysis and wall shear stress (WSS) assessment. AngioCT data from 20 patients aged 50-60 years, who had undergone stent-graft placement at the Medical University of Vienna, were utilized. Three-dimensional geometries were reconstructed using ANSYS software (ANSYS, Canonsburg, Pa, USA) for blood flow simulation. The blood flow was assumed to be incompressible and laminar. The stent-graft’s area and height were scrutinized, alongside the formulation of a shape factor connecting the real stent-graft’s volume with a virtually reconstructed cylinder. Prostheses with endoleaks exhibited an average WSS of 328.23 ± 107.63 Pa, while the average WSS within the endoleak area was 30.00 ± 9.57 Pa. In contrast, prostheses without endoleaks displayed a WSS of 367.90 ± 119.42 Pa. Computational Fluid Dynamics (CFD) algorithms facilitated the analysis of WSS values pre- and post-endoleak appearance, as well as within the endoleak region. Additionally, the proposed shape factor facilitated the spatial configuration of stent-grafts with and without endoleaks, incorporating the pushing forces.
Rocznik
Strony
711--731
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr., wzory
Twórcy
  • Faculty of Safety Engineering and Civil Protection, Fire University, ul. J. Słowackiego 52/54, 01-629 Warsaw, Poland
  • Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, ul. gen. L. Żeligowskiego 7/9, 90-752 Łódź, Poland
  • Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, ul. gen. L. Żeligowskiego 7/9, 90-752 Łódź, Poland
autor
  • Department of Surgery, Division of Vascular Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
  • Department of Surgery, Division of Vascular Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
  • Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
autor
  • Institute of Electronics, Lodz University of Technology, Al. Politechniki 10, 93-590 Lodz, Poland
  • Institute of Electronics, Lodz University of Technology, Al. Politechniki 10, 93-590 Lodz, Poland
Bibliografia
  • [1] Kwon, J., Dimuzio, P., Salvatore, D., & Abai, B. (2020). Incidence of stent graft failure from type IIIB endoleak in contemporary endovascular abdominal aortic aneurysm repair. Journal of Vascular Surgery, 71(2), 645-653. https://doi.org/10.1016/j.jvs.2019.06.183
  • [2] Epple, J., Svidlova, Y., Schmitz-Rixen, T., Böckler, D., Lingwal, N., & Grundmann, R.T. (2023). Long-Term Outcome of Intact Abdominal Aortic Aneurysm after Endovascular or Open Repair. Vascular and Endovascular Surgery, 57(8), 829-837. https://doi.org/10.1177/15385744231178130
  • [3] Yokoyama, Y., Kuno, T., & Takagi, H. (2020). Meta-analysis of phase-specific survival after elective endovascular versus surgical repair of abdominal aortic aneurysm from randomized controlled trials and propensity score-matched studies. Journal of Vascular Surgery, 72(4), 1464-1472. https://doi.org/10.1016/j.jvs.2020.03.041
  • [4] Aggarwal, S., Qamar, A., Sharma, V., & Sharma, A. (2011). Abdominal aortic aneurysm: A comprehensive review. Experimental & Clinical Cardiology, 16(1), 11-15.
  • [5] Knops, A.M., Ubbink, D.T., Legemate, D.A., de Haes, J.C.J.M., & Goossens, A. (2010). Information Communicated with patients in Decision Making about their Abdominal Aortic Aneurysm. European Journal of Vascular and Endovascular Surgery, 39(6), 708-713. https://doi.org/10.1016/j.ejvs.2010.02.012
  • [6] Synowiec, T., Warot, M., Burchardt, P., & Chęciński, P. (2015). All dangerous types of endoleaks after endovascular aneurysm repair in a single patient. Videosurgery and Other Miniinvasive Techniques, 290-294. https://doi.org/10.5114/wiitm.2015.52600
  • [7] Rial, R., Serrano, F.J., Vega, M., Rodriguez, R., Martin, A., Mendez, J., Mendez, R., Santos, E., & Gallego, J. (2004). Treatment of Type II Endoleaks after Endovascular Repair of Abdominal Aortic Aneurysms: Translumbar Puncture and Injection of Thrombin into the Aneurysm Sac. European Journal of Vascular and Endovascular Surgery, 27(3), 333-335. https://doi.org/10.1016/j.ejvs.2003.11.005
  • [8] Li, B., Khan, S., Salata, K., Hussain, M.A., de Mestral, C., Greco, E., Aljabri, B. A., Forbes, T. L., Verma, S., & Al-Omran, M. (2019). A systematic review and meta-analysis of the long-term outcomes of endovascular versus open repair of abdominal aortic aneurysm. Journal of Vascular Surgery, 70(3), 954-969.e30. https://doi.org/10.1016/j.jvs.2019.01.076
  • [9] Cassagnes, L., Pérignon, R., Amokrane, F., Petermann, A., Bécaud, T., Saint-Lebes, B., Chabrot, P., Rousseau, H., & Boyer, L. (2016). Aortic stent-grafts: Endoleak surveillance. Diagnostic and Interventional Imaging, 97(1), 19-27. https://doi.org/10.1016/j.diii.2014.12.014
  • [10] Nana, P., Dakis, K., Brodis, A., Spanos, K., Kouvelos, G., Eckstein, H.-H., & Giannoukas, A. (2022). A systematic review and meta-analysis on early mortality after abdominal aortic aneurysm repair in females in urgent and elective settings. Journal of Vascular Surgery, 75(3), 1082-1088.e6. https://doi.org/10.1016/j.jvs.2021.10.040
  • [11] White, G.H., May, J., Waugh, R.C., Chaufour, X., & Yu, W. (1998). Type III and Type IV Endoleak: Toward a Complete Definition of Blood Flow in the Sac after Endoluminal AAA Repair. Journal of Endovascular Therapy, 5(4), 305-309. https://doi.org/10.1177/152660289800500403
  • [12] Gil, F., Osowski, S., Świderski, B., & Słowińska, M. (2022). Ensemble of classifiers based on deep learning for medical image recognition. Metrology and Measurement Systems, 30(1), 139-156. https://doi.org/10.24425/mms.2023.144400
  • [13] Roos, J.E., Hellinger, J.C., Hallet, R., Fleischmann, D., Zarins, C.K., & Rubin, G. D. (2005). Detection of endograft fractures with multidetector row computed tomography. Journal of Vascular Surgery, 42(5), 1002-1006. https://doi.org/10.1016/j.jvs.2005.07.009
  • [14] Quaia, E. (2005). Detection of Endoleak After Endovascular Abdominal Aortic Aneurysm Repair. In: Quaia, E. (Eds.), Contrast Media in Ultrasonography. Medical Radiology (pp. 111-115). Springer. https://doi.org/10.1007/3-540-27214-3_9
  • [15] Suh, G.-Y., Les, A.S., Tenforde, A.S., Shadden, S.C., Spilker, R.L., Yeung, J.J., Cheng, C.P., Herfkens, R.J., Dalman, R.L., & Taylor, C.A. (2010). Quantification of particle Residence Time in Abdominal Aortic Aneurysms Using Magnetic Resonance Imaging and Computational Fluid Dynamics. Annals of Biomedical Engineering, 39(2), 864-883. https://doi.org/10.1007/s10439-010-0202-4
  • [16] Polanczyk, A., Podyma, M., Trebinski, L., Chrzastek, J., Zbicinski, I., & Stefanczyk, L. (2016). A Novel Attempt to Standardize Results of CFD Simulations Basing on Spatial Configuration of Aortic Stent-Grafts. PLOS ONE, 11(4), e0153332. https://doi.org/10.1371/journal.pone.0153332
  • [17] Chandrashekar, A., Handa, A., Lapolla, P., Shivakumar, N., Ngetich, E., Grau, V., & Regent Lee. (2020). Prediction of Abdominal Aortic Aneurysm Growth Using Geometric Assessment of Computerized Tomography Images Acquired During the Aneurysm Surveillance Period. Annals of Surgery, 277(1), e175-e183. https://doi.org/10.1097/sla.0000000000004711
  • [18] Prucnal, M.A., & Polak, A.G. (2023). Single-channel EEG processing for sleep apnea detection and differentiation. Metrology and Measurement Systems, 30(2), 323-336. https://doi.org/10.24425/mms.2023.144866
  • [19] Samartkit, P., & Pullteap, S. (2024). Non-Invasive Continuous Blood Pressure Sensors in Biomedical Engineering Research: A Review. Sensors and Actuators A: Physical, 367, 115084. https://doi.org/10.1016/j.sna.2024.115084
  • [20] Ismail, S.N.A., Nayan, N.A., Jaafar, R., & May, Z. (2022). Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach. Sensors, 22(16), 6195. https://doi.org/10.3390/s22166195
  • [21] Ismail, S.N.A., Nayan, N.A., Mohammad Haniff, M.A.S., Jaafar, R., & May, Z. (2023). Wearable Two-Dimensional Nanomaterial-Based Flexible Sensors for Blood Pressure Monitoring: A Review. Nanomaterials, 13(5), 852. https://doi.org/10.3390/nano13050852
  • [22] Alter, P., Orszag, J., Wouters, E.F., Vogelmeier, C.F., & Jörres, R.A. (2022). Differences in the Measurement of Functional Residual Capacity Between Body Plethysmographs of Two Manufacturers. International Journal of Chronic Obstructive Pulmonary Disease, Volume 17, 1477-1482. https://doi.org/10.2147/copd.s363493
  • [23] Antonowicz, A., Wojtas, K., Makowski, Ł., Orciuch, W., & Kozłowski, M. (2023). Particle Image Velocimetry of 3D-Printed Anatomical Blood Vascular Models Affected by Atherosclerosis. Materials, 16(3), 1055. https://doi.org/10.3390/ma16031055
  • [24] Lu, Y.-H., Mani, K., Panigrahi, B., Hsu, W.-T., & Chen, C.-Y. (2016). Endoleak Assessment Using Computational Fluid Dynamics and Image Processing Methods in Stented Abdominal Aortic Aneurysm Models. Computational and Mathematical Methods in Medicine, 2016, 1-9. https://doi.org/10.1155/2016/9567294
  • [25] Bologna, E., Dinoto, E., Di Simone, F., Pecoraro, F., Ragusa, S., Siciliano, K., & Zingales, M. (2023). Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEM) of a Customized Stent-Graft for Endovascular (EVAR) Treatment of Abdominal Aortic Aneurism (AAA). Applied Sciences, 13(9), 5712. https://doi.org/10.3390/app13095712
  • [26] Materka, A., & Jurek, J. (2024). Using Deep Learning and B-Splines to Model Blood Vessel Lumen from 3D Images. Sensors, 24(3), 846. https://doi.org/10.3390/s24030846
  • [27] Fung, G.S.K., Lam, S.K., Cheng, S.W.K., & Chow, K.W. (2008). On stent-graft models in thoracic aortic endovascular repair: A computational investigation of the hemodynamic factors. Computers in Biology and Medicine, 38(4), 484-489. https://doi.org/10.1016/j.compbiomed.2008.01.012
  • [28] Peng, C., He, W., Huang, X., Ma, J., Yuan, T., Shi, Y., & Wang, S. (2023). The study on the impact of AAA wall motion on the hemodynamics based on 4D CT image data. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1103905
  • [29] Polanczyk, A., Piechota-Polanczyk, A., Huk, I., Neumayer, C., Balcer, J., & Strzelecki, M. (2021). Computational Fluid Dynamic Technique for Assessment of How Changing Character of Blood Flow and Different Value of Hct Influence Blood Hemodynamic in Dissected Aorta. Diagnostics, 11(10), 1866. https://doi.org/10.3390/diagnostics11101866
  • [30] Polanczyk, A., Piechota-Polanczyk, A., Stefańczyk, L., & Strzelecki, M. (2020). Spatial Configuration of Abdominal Aortic Aneurysm Analysis as a Useful Tool for the Estimation of Stent-Graft Migration. Diagnostics, 10(10), 737. https://doi.org/10.3390/diagnostics10100737
  • [31] Polanczyk, A., Podgorski, M., Wozniak, T., Stefanczyk, L., & Strzelecki, M. (2018). Computational Fluid Dynamics as an Engineering Tool for the Reconstruction of Hemodynamics after Carotid Artery Stenosis Operation: A Case Study. Medicina, 54(3), 42. https://doi.org/10.3390/medicina54030042
  • [32] Polanczyk, A., Piechota-Polańczyk, A., Stefanczyk, L., & Strzelecki, M. (2020). Shape and Enhancement Analysis as a Useful Tool for the Presentation of Blood Hemodynamic Properties in the Area of Aortic Dissection. Journal of Clinical Medicine, 9(5), 1330. https://doi.org/10.3390/jcm9051330
  • [33] Polanczyk, A., Podgorski, M., Polanczyk, M., Veshkina, N., Zbicinski, I., Stefanczyk, L., & Neumayer, C. (2018). A novel method for describing biomechanical properties of the aortic wall based on the three-dimensional fluid-structure interaction model. Interactive CardioVascular and Thoracic Surgery, 28(2), 306-315. https://doi.org/10.1093/icvts/ivy252
  • [34] Polanczyk, A., Piechota-Polanczyk, A., Neumayer, Ch., & Huk, I. (2019). CFD Reconstruction of Blood Hemodynamic Based on a Self-made Algorithm in patients with Acute Type IIIb Aortic Dissection Treated with TEVAR Procedure. In IUTAM Bookseries (pp. 75-84). Springer International Publishing. https://doi.org/10.1007/978-3-030-13720-5_7
  • [35] Polanczyk, A., Piechota-Polanczyk, A., Domenig, C., Nanobachvili, J., Huk, I., & Neumayer, C. (2018). Computational Fluid Dynamic Accuracy in Mimicking Changes in Blood Hemodynamics in patients with Acute Type IIIb Aortic Dissection Treated with TEVAR. Applied Sciences, 8(8), 1309. https://doi.org/10.3390/app8081309
  • [36] Polanczyk, A., Podyma, M., Stefanczyk, L., Szubert, W., & Zbicinski, I. (2015). A 3D model of thrombus formation in a stent-graft after implantation in the abdominal aorta. Journal of Biomechanics, 48(3), 425-431. https://doi.org/10.1016/j.jbiomech.2014.12.033
  • [37] Dias, N.V., Ivancev, K., Malina, M., Resch, T., Lindblad, B., & Sonesson, B. (2004). Intra-aneurysm sac pressure measurements after endovascular aneurysm repair: differences between shrinking, unchanged, and expanding aneurysms with and without endoleaks. Journal of Vascular Surgery, 39(6), 1229-1235. https://doi.org/10.1016/j.jvs.2004.02.041
  • [38] Vergara, C., Le Van, D., Quadrio, M., Formaggia, L., & Domanin, M. (2017). Large eddy simulations of blood dynamics in abdominal aortic aneurysms. Medical Engineering & Physics, 47, 38-46. https://doi.org/10.1016/j.medengphy.2017.06.030
  • [39] Polanczyk, A., Piechota-Polanczyk, A., Huk, I., Neumayer, C., & Strzelecki, M. (2022). Computational Fluid Dynamics as an Engineering Tool for the Reconstruction of Endovascular Prosthesis Endoleaks. IEEE Access, 10, 18873-18885. https://doi.org/10.1109/access.2022.3150335
  • [40] Jayendiran, R., Nour, B., & Ruimi, A. (2018). Computational fluid-structure interaction analysis of blood flow on patient-specific reconstructed aortic anatomy and aneurysm treatment with Dacron graft. Journal of Fluids and Structures, 81, 693-711. https://doi.org/10.1016/j.jfluidstructs.2018.06.008
  • [41] Dias, N.V., Ivancev, K., Resch, T.A., Malina, M., & Sonesson, B. (2007). Endoleaks after endovascular aneurysm repair lead to nonuniform intra-aneurysm sac pressure. Journal of Vascular Surgery, 46(2), 197-203. https://doi.org/10.1016/j.jvs.2007.04.016
  • [42] Nolz, R., Schwartz, E., Langs, G., Loewe, C., Wibmer, A.G., Prusa, A.M., Teufelsbauer, H., & Schoder, M. (2015). Stent Graft Surface Movement after Infrarenal Abdominal Aortic Aneurysm Repair: Comparison of patients with and without a Type 2 Endoleak. European Journal of Vascular and Endovascular Surgery, 50(2), 181-188. https://doi.org/10.1016/j.ejvs.2015.03.031
  • [43] Susic, D., Varagic, J., Ahn, J., & Frohlich, E. (2004). Collagen Cross-link Breakers: A Beginning of a New Era in the Treatment of Cardiovascular Changes Associated with Aging, Diabetes, and Hypertension. Current Drug Targets - Cardiovascular & Hematological Disorders, 4(1), 97-101. https://doi.org/10.2174/1568006043481347
  • [44] Chatzizisis, Y.S., Coskun, A.U., Jonas, M., Edelman, E.R., Feldman, C.L., & Stone, P.H. (2007). Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling. Journal of the American College of Cardiology, 49(25), 2379-2393. https://doi.org/10.1016/j.jacc.2007.02.059
  • [45] Poon, E.K.W., Barlis, P., Moore, S., Pan, W.-H., Liu, Y., Ye, Y., Xue, Y., Zhu, S.J., & Ooi, A.S.H. (2014). Numerical investigations of the haemodynamic changes associated with stent malapposition in an idealised coronary artery. Journal of Biomechanics, 47(12), 2843-2851. https://doi.org/10.1016/j.jbiomech.2014.07.030
  • [46] Szajer, J., & Ho-Shon, K. (2018). A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations - A review. Magnetic Resonance Imaging, 48, 62-69. https://doi.org/10.1016/j.mri.2017.12.005
Uwagi
The study was approved by the local Institutional Review Board (2069/2012) of the Medical University of Vienna. The study was supported by the Polish National Centre for Research and Development (501/10-34-19-605 to AP) and by Grant number 181110 from the Medical University of Vienna, Department of Surgery, Division of Vascular Surgery (to IH). In the following study, the ANSYS Software affiliated to the BRaIn Laboratories of the Medical University of Lodz was used.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24f235ad-a436-4222-b158-092a0aa6d223
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.