PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of Polypyrrole/Polyurethane Foam Composite Material

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przygotowanie materiału kompozytowego z polypirolu/pianki poliuretanowej
Języki publikacji
EN
Abstrakty
EN
Firstly, the paper focused on the polyurethane foam soaking process with pyrrole solution, and discuss the estimated electro-mechanical properties of the modified PU foam. Secondly, scanning electron microscopy (SEM) micrographs were collected to understand the polypyrrole distribution inside the foam. The results show that the chemical polymerisation parameters needed to realise this amount of polypyrrole in the foam were 0.1 mol/L of pyrrole, a mole ratio of 1:2.25, an oxidation temperature of 12 ± 3 °C, and an oxidation time of 2 hours. SEM images of the samples prepared with the modified approach showed a continuous layer of about 10-15 μm thickness of the polypyrrole attached to the surface of the PU foam.
PL
W artykule skoncentrowano się na procesie namaczania pianki poliuretanowej roztworem pirolu i omówiono oszacowane właściwości elektromechaniczne zmodyfikowanej pianki PU. Następnie zbadano rozkład polipirolu wewnątrz pianki przy zastosowaniu skaningowego mikroskopu elektronowego (SEM). Wyniki pokazały, że parametry polimeryzacji chemicznej potrzebne do uzyskania odpowiedniej ilości polipirolu w piance wynosiły 0,1 mol/l pirolu, stosunek molowy wynosił 1:2,25, temperatura utleniania wynosiła 12 ± 3 ° C i czas utleniania 2 godziny. Obrazy SEM próbek przygotowanych zgodnie ze zmodyfikowanym podejściem pokazały ciągłą warstwę o grubości około 10-15 μm polipirolu na powierzchni pianki PU.
Rocznik
Strony
69--73
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
  • Tianjin Municipal Key Laboratory of Advanced Fibre and Energy Storage, Tianjin 300387, China
  • Key Laboratory of Advanced Textile Composites, Ministry of Education, Tianjin 300387, China
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
  • Rhine-Waal University of Applied Sciences, Faculty of Textile and Clothing Technology, Monchengladbath 47805, Germany
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
  • Tianjin Municipal Key Laboratory of Advanced Fibre and Energy Storage, Tianji
  • Key Laboratory of Advanced Textile Composites, Ministry of Education, Tianjin 300387, China
autor
  • Tiangong University, School of Humanities, Tianjin 300387, China
Bibliografia
  • 1. Dakkach M, Fontrodona X, Parella T, Atlamsani A, Romero I, Rodriguez M. Polypyrrole-Functionalized Ruthenium Carbene Catalysts as Efficient Heterogeneous Systems for Olefin Epoxidation. Dalton Transactions 2014; 43, 26: 9916-9923.
  • 2. Ge Ch, Liu Y, Qian X, Zhao X. Investigation into the Dielectric Properties of Polypyrrole Coated Fabrics Composites. FIBRES & TEXTILES in Eastern Europe 2019; 27, 5(137): 75-81. DOI: 10.5604/01.3001.0013.2905.
  • 3. Kobayashi D, Endo Y, Takahashi T, Otake K, Shono A. New Method for the Synthesis of Polypyrrole Particle Using Water/Oil Emulsion. Journal of Chemical Eneineering of Japan 2013; 46, 8: 550-555.
  • 4. Liu Y, Zhao X, Tuo X. Preparation of Polypyrrole Coated Cotton Conductive Fabrics. The Journal of The Textile Institute 2017;108, 5: 829-834.
  • 5. Zhou F, Guo Z, Wang W, Lei X, Zhang B, Zhang H, Zhang Q. Preparation of Self-Healing, Recyclable Epoxy Resins And Low-Electrical Resistance Composites Based on Double-Disulfide Bond Exchange. Composites Science And Technology 2018; 167: 79-85.
  • 6. Mu K, Tao Y, Peng Z, Hu G, Du K, Cao Y. Surface Architecture Modification of High Capacity Li1.2Ni0.2Mn0.6O2 with Synergistic Conductive Polymers LiPPA and PPy for Lithium Ion Batteries. Applied Surface Science 2019,495, UNSP 143503.
  • 7. Yan B, Wang Y, Wu Y, Prox J, Yang H, Guo L. Fast Electrochemical Netting of Composite Chains for Transferable Highly Conductive Polymeric Nanofilms. Journal of Physical Chemistry B 2019; 123, 40: 8580-8589.
  • 8. Kopecky D, Varga M, Prokes J, Vrnata M, Trchova M, Kopecka J, Vaclavik M. Optimization Routes for High Electrical Conductivity of Polypyrrole Nanotubes Prepared in Presence of Methyl Orange. Synthetic Metals 2017; 230: 86-96.
  • 9. Chen J, Zhu X, Luo C, Dai Y. Electronic and Optical Properties of Pyrrole and Thiophene Oligomers: A Density Functional Theory Study. International Journal of Quantum Chemistry 2017; 117, 24: e25453.
  • 10. Subhrokoli G, Santu D, Shuvojit P, Preethi T, Basudev R, Partha M, Soumyajit R, Ayan B. In Situ Self-Assembly and Photopolymerization for Hetero-Phase Synthesis and Patterning of Conducting Materials using Soft Oxometalates in Thermo-Optical Tweezers. Journal of Materials Chemistry C 2017; 5, 27: 6718-6728.
  • 11. Liu X, Liang Y, Yue G, Tu Y, Zheng H. A Dual Function of High Efficiency Quasi-Solid-State Flexible Dye-Sensitized Solar Cell Based on Conductive Polymer Integrated Into Poly (Acrylic Acid-Co-Carbon Nanotubes) Gel Electrolyte. Solar Energy 2017; 148: 63-69.
  • 12. Subramanyam K, Niteen J, Gelling V Johnston. Conductive Polypyrrole and Acrylate Nanocomposite Coatings: Mechanistic Study on Simultaneous Photopolymerization. Progress in Organic Coatings 2016;101: 440-454.
  • 13. Hong Yuan, Qingze Jiao, Shenli Zhang, Yun Zhao, Qin Wu, Hansheng Li. In Situ Chemical Vapor Deposition Growth of Carbon Nanotubes on Hollow Cofe2o4 as an Efficient and Low Cost Counter Electrode for Dye-Sensitized Solar Cells. Journal of Power Sources 2016; 325: 417-426.
  • 14. May LP, Yim Jin-Heong. Novel Preparation Route of Conductive PPy-PAN Hybrid Thin Films Using Simultaneous Co-Vaporized Vapor Phase Polymerization, Polymer-Korea, 2018, 42, 4: 701-707.
  • 15. Acar Handan, Karakisla Meral, Sacak Mehmet. Preparation And Characterization Of Conductive Polypyrrole/Kaolinite Composites. Materials Science in Semiconductor Processing 2013; 16, 3: 845-850.
  • 16. Yuanjun Liu, Xiaoming Zhao. The Influence of Dopant Type and Dosage on the Dielectric Properties of Polyaniline/Nylon Composites. The Journal of The Textile Institute 2017; 108, 9: 1628-1633.
  • 17. Banaszczyk J, Rybak A, Odziomek M. Aging of Polypyrrole Coated Fabrics Potted in Epoxy. FIBRES & TEXTILES in Eastern Europe 2015; 23, 2: 79-83.
  • 18. Liu Y, Liu B, Zhao X. The Influence of The Type and Concentration of Oxidants on the Dielectric Constant of the Polypyrrole-Coated Plain Woven Cotton Fabric. The Journal of The Textile Institute 2018; 109, 9: 1127-1132.
  • 19. Khan Hamayun, Malook Khan, Shah Mutabar. Highly Selective and Sensitive Ammonia Sensor using Polypyrrole/V2O5 Composites. Journal of Materials Science-Materials in Electronics 2017; 28, 18: 13873-13879.
  • 20. Yuanjun liu, Yuanchen Liu, Xiaoming Zhao. The Influence of Pyrrole Concentration on the Dielectric Properties of Polypyrrole Composite Material. The Journal of The Textile Institute 2017,108, 7: 1246-1249.
  • 21. Yuanjun Liu, Yuanchen Liu, Xiaoming Zhao. The Influence of Dopant on the Dielectric Properties of Flexible Polypyrrole Composites. The Journal of The Textile Institute 2017; 108, 7: 1280-1284.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24ee0367-12b7-49e0-a6f1-5e9f37d84271
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.