PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanocrystallines as core materials for contactless power transfer (CPT)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Efficient contactless power transfer (CPT) is an emerging technology which is attracting great scientific interest because it can mitigate some of the problems commonly associated with conventional wired power transfer systems. CPT systems suffer from very low efficiency because of the poor coupling coefficient, which is due to the large air gap between the transmitter and receiver coils. Therefore, CPT transformers are mostly operated at high frequencies to improve the quality factor of transmitter and receiver coils and thus counterbalance the effect of the low coupling coefficient. On the other hand, informed selection and design of core materials for CPT transformers can improve the coupling coefficient and thereby boost the overall power transfer efficiency of the system. However, at high power and high frequency CPT applications, core losses become very high and play an important role in determining the efficiency of the system. This paper reports on a detailed investigation into the suitability of nanocrystallines as core materials for high power and high frequency CPT systems.
Rocznik
Strony
20--29
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Electrical Engineering, Indian Institute of Technology (ISM), Dhanbad - 826004, India
autor
  • Department of Electrical Engineering, Indian Institute of Technology (ISM), Dhanbad - 826004, India
autor
  • Department of Electrical Engineering, PVG’s College of Engineering and Technology, Pune - 411003, India
autor
  • Department of Electrical Engineering, Indian Institute of Technology (ISM), Dhanbad - 826004, India
Bibliografia
  • [1] D. A. Pedder, A. D. Brown, J. A. Skinner, A contactless electrical energy transmission system, IEEE Transactions on Industrial Electronics 46 (1) (1999) 23–30.
  • [2] J. Boys, G. Covic, A. W. Green, Stability and control of inductively coupled power transfer systems, IEE Proceedings-Electric Power Applications 147 (1) (2000) 37–43.
  • [3] J. Hou, Q. Chen, S.-C. Wong, K. T. Chi, X. Ruan, Analysis and control of series/series-parallel compensated resonant converter for contactless power transfer, IEEE Journal of Emerging and Selected Topics in Power Electronics 3 (1) (2015) 124–136.
  • [4] R. Bosshard, J. W. Kolar, Inductive power transfer for electric vehicle charging: Technical challenges and tradeoffs, IEEE Power Electronics Magazine 3 (3) (2016) 22–30.
  • [5] Data sheets soft ferrite products and accessories. URL http://www.ferroxcube.com
  • [6] G. Herzer, Amorphous and nanocrystalline soft magnets, Kluwer Academic Publishers, 1997.
  • [7] R. Kolano, A. Kolano-Burian, K. Krykowski, J. Hetmańczyk, M. Hreczka, M. Polak, J. Szynowski, Amorphous soft magnetic core for the stator of the high-speed pmbldc motor with half-open slots, IEEE Transactions on Magnetics 52 (6) (2016) 1–5.
  • [8] W. Zhong, S. Hui, Maximum energy efficiency tracking for wireless power transfer systems, IEEE Transactions on Power Electronics 30 (7) (2015) 4025–4034.
  • [9] L. Yuan, B. Li, Y. Zhang, F. He, K. Chen, Z. Zhao, Maximum efficiency point tracking of the wireless power transfer system for the battery charging in electric vehicles, in: Electrical Machines and Systems (ICEMS), 2015 18th International Conference on, IEEE, 2015, pp. 1101–1107.
  • [10] P. Sergeant, A. Van den Bossche, Inductive coupler for contactless power transmission, IET Electric Power Applications 2 (1) (2008) 1–7.
  • [11] J. Zhang, X. Yuan, C. Wang, Y. He, Comparative analysis of two-coil and three-coil structures for wireless power transfer, IEEE Transactions on Power Electronics 32 (1) (2017) 341–352.
  • [12] S. Zurek, Fem simulation of effect of non-uniform air gap on apparent permeability of cut cores, IEEE Transactions on Magnetics 48 (4) (2012) 1520–1523.
  • [13] X. Xin, D. R. Jackson, J. Chen, Wireless power transfer along oil pipe using ferrite materials, IEEE Transactions on Magnetics 53 (3) (2017) 1–5.
  • [14] I.-G. Lee, N. Kim, I.-K. Cho, I.-P. Hong, Design of a patterned soft magnetic structure to reduce magnetic flux leakage of magnetic induction wireless power transfer systems, IEEE Transactions on Electromagnetic Compatibility 59 (6) (2017) 1856–1863.
  • [15] C. A. Stergiou, V. Zaspalis, Impact of ferrite shield properties on the low-power inductive power transfer, IEEE Transactions on Magnetics 52 (8) (2016) 1–9.
  • [16] L. Li, Y. Fang, Y. Liu, Preparation and application on antenna of soft ferrite core for wireless sensor networks, IEEE Transactions on Magnetics 51 (11) (2015) 1–3.
  • [17] W. Ding, X. Wang, Magnetically coupled resonant using mn-zn ferrite for wireless power transfer, in: Electronic Packaging Technology (ICEPT), 2014 15th International Conference on, IEEE, 2014, pp. 1561–1564.
  • [18] Y. Han, G. Cheung, A. Li, C. R. Sullivan, D. J. Perreault, Evaluation of magnetic materials for very high frequency power applications, IEEE Transactions on Power Electronics 27 (1) (2012) 425–435.
  • [19] A. J. Hanson, J. A. Belk, S. Lim, C. R. Sullivan, D. J. Perreault, Measurements and performance factor comparisons of magnetic materials at high frequency, IEEE Transactions on Power Electronics 31 (11) (2016) 7909–7925.
  • [20] R. Prochazka, J. Hlavacek, K. Draxler, Magnetic circuit of a highvoltage transformer up to 10 khz, IEEE Transactions on Magnetics 51 (1) (2015) 1–4.
  • [21] X. Liu, Y.Wang, M. R. Islam, G. Lei, C. Liu, J. Zhu, Comparison of electromagnetic performances of amorphous and nanocrystalline corebased high frequency transformers, in: Electrical Machines and Systems (ICEMS), 2014 17th International Conference on, IEEE, 2014, pp. 2028–2032.
  • [22] J. Petzold, Advantages of soft magnetic nanocrystalline materials for modern electronic applications, Journal of Magnetism and Magnetic Materials 242 (2002) 84–89.
  • [23] S. Purushotham, R. Ramanujan, Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy, Acta biomaterialia 6 (2) (2010) 502–510.
  • [24] K. Pan, Y. Dong, W. Zhou, G. Wang, Q. Pan, Y. Yuan, X. Miao, G. Tian, Tio2-b nanobelt/anatase tio2 nanoparticle heterophase nanostructure fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells, Electrochimica Acta 88 (2013) 263–269.
  • [25] T. Kauder, K. Hameyer, Performance factor comparison of nanocrystalline, amorphous, and crystalline soft magnetic materials for mediumfrequency applications, IEEE Transactions on Magnetics 53 (11) (2017) 1–4.
  • [26] Y. Liu, Y. Han, F. Lin, L. Li, Performance evaluation of fe-based nanocrystalline cores with high and low residual flux, IEEE transactions on plasma science 42 (8) (2014) 2079–2085.
  • [27] W. Shen, F. Wang, D. Boroyevich, C. W. Tipton IV, High-density nanocrystalline core transformer for high-power high-frequency resonant converter, IEEE Transactions on Industry Applications 44 (1) (2008) 213–222.
  • [28] Hitachi, Power electronics component catalog Finemet F3CC series cut core (April 2016).
  • [29] F. D. Tan, J. L. Vollin, S. M. Cuk, A practical approach for magnetic core-loss characterization, IEEE Transactions on Power Electronics 10 (2) (1995) 124–130.
  • [30] C. Cuellar, A. Benabou, N. Idir, High frequency model of ferrite and nanocrystalline ring core inductors, in: Power Electronics and Applications (EPE’15 ECCE-Europe), 2015 17th European Conference on, IEEE, 2015, pp. 1–8.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24e707ab-4129-4e35-9ada-81453c67d3f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.