Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main problem with using acoustic emission to control and diagnostics of composite materials and products from composite materials is the interpretation and identification of recorded information during development processes occurring in the material’s structure. This is due to the high sensitivity of the acoustic emission method to various influencing factorsand the practical absence of acoustic radiation models. To solve this problem, it is necessary to determine the influence of various factors on acoustic radiation parameters. In this study, based on the acoustic radiation developed model we simulate the influence of one parameter characterizing composite properties on acoustic emission energy parameters during composite material destruction by shear forces according to the von Mises criterion. Simulation of acoustic radiation under given conditions makes it possible to determine the patterns of acoustic emission signals energy parameters changes and their sensitivity to changes of influencing factor, as well as to obtain mathematical expressions for describing obtained patterns. The results of this case study can be useful for developing methods of control, monitoring and diagnostics of composite materials and products made from composite materials.
Rocznik
Tom
Strony
19--24
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Department of Computerized Electrical Systems and Technologies, National Aviation University,Liubomyra Huzara ave. 1, Kyiv, 03058, Ukraine
autor
- Department of Computerized Electrical Systems and Technologies, National Aviation University,Liubomyra Huzara ave. 1, Kyiv, 03058, Ukraine
Bibliografia
- [1] S. Clay et al., „Comparison of Diagnostic Techniques to Measure Damage Growth in a Stiffened Composite Panel,” Composites Part A: Applied Science and Manufacturing, vol. 137, 2020, 106030.
- [2] B. Wang et al., „Non-Destructive Testing and Evaluation of Composite Materials/Structures: A State-of-the-Art Review,” Advances in mechanical engineering, vol. 12, no. 4, 2020, 1687814020913761.
- [3] R. Gupta et al., „A Review of Sensing Technologies for Non-Destructive Evaluation of Structural Composite Materials,” Journal of Composites Science, vol. 5, no. 12, 2021, p. 319.
- [4] Z. Fan, M.H. Santare, and S.G. Advani, „Interlaminar Shear Strength of Glass Fiber Reinforced Epoxy Composites Enhanced With Multi-Walled Carbon Nanotubes,” Composites Part A: Applied Science and Manufacturing, vol. 39, no. 3, 2008, pp. 540–554.
- [5] Y. Liuet al., „Experimental Research on Shear Failure Monitoring of Composite Rocks Using Piezoelectric Active Sensing Approach,” Sensors, vol. 20, no. 5, 2020, 1376.
- [6] B.D. Coleman, „Time Dependence of Mechanical Breakdown Phenomena.” Journal of Applied Physics, vol. 27, no. 8, 1956, pp. 862–866.
- [7] A. Hansen, P.C. Hemmer, and S.Pradhan. The Fiber Bundle Model: Modeling Failure in Materials, John Wiley & Sons, 2015.
- [8] F. Kun, S. Zapperi, and H.J. Herrmann, „Damage in Fiber Bundle Models,” The European Physical Journal B-Condensed Matter and Complex Systems, vol. 17, no. 2,2000, pp. 269–279.
- [9] Y. Moreno, J.B. Gómez, and A.F. Pacheco, „SelfOrganized Criticality in a Fibre-Bundle-Type Model,” Physica A: Statistical Mechanics and its Applications, vol. 274, no. 3–4, 1999, pp. 400–409.
- [10] Hemmer, P. C., and Hansen, A. (December 1, 1992). “The Distribution of Simultaneous Fiber Failures in Fiber Bundles.” ASME. J. Appl. Mech. December 1992; 59(4): 909–914.
- [11] W.I.Newman and S.L. Phoenix, „Time-Dependent Fiber Bundles with Local Load Sharing,” Physical Review E, vol. 63, no. 2, 2001, 021507.
- [12] S. Pradhan, A. Hansen, and B.K. Chakrabarti, „Failure Processes in Elastic Fiber Bundles,” Reviews of Modern Physics, vol. 82, no. 1, 2010, p. 499.
- [13] A. Hader, et al., „Failure Kinetic and Scaling Behavior of the Composite Materials: Fiber Bundle Model with the Local Load-Sharing Rule (LLS),” Optical Materials, vol. 36, no.1, 2013, 3–7.
- [14] A. Capelli et al., „Fiber-Bundle Model with TimeDependent Healing Mechanisms to Simulate Progressive Failure of Snow,” Physical Review E, vol. 98, no. 2, 2018, 023002.
- [15] F. Raischel, F. Kun, and H.J. Herrmann, „Simple Beam Model for the Shear Failure of Interfaces,” Physical Review E, vol. 72, no. 4, 2005, 046126.
- [16] F. Raischel, F. Kun, and H.J. Herrmann, „Local Load Sharing Giber Bundles with a Lower Cutoff of Strength Disorder,” Physical Review E, vol. 74, no. 3, 2006, 035104.
- [17] G. Michlmayr, D. Or, and D.Cohen, „Fiber Bundle Models for Stress Release and Energy Bursts During Granular Shearing,” Physical Review E, vol. 86, no.6, 2012, 061307.
- [18] K. Kovácset al., „Brittle-to-Ductile Transition in a Fiber Bundle with Strong Heterogeneity,”Physical Review E, vol. 87, no. 4, 2013, 042816.
- [19] S.G. Abaimov, „Non-Equilibrium Annealed Damage Phenomena: A Path Integral Approach,” Frontiers in Physics, 2017, p. 6.
- [20] Z. Danku, G. Ódor, and F.Kun, „Avalanche Dynamics in Higher-Dimensional Fiber Bundle Models,” Physical Review E, vol. 98, no. 4, 2018, 042126.
- [21] Y. Yamadaand Y.Yamazaki, „Avalanche Distribution of Fiber Bundle Model with Random Displacement,” Journal of the Physical Society of Japan, vol. 88, no.2, 2019, 023002.
- [22] A.R. Oskoueiand M.Ahmadi, „Fracture Strength Distribution in E-Glass Fiber Using Acoustic Emission,” Journal of Composite Materials, vol. 44, no.6, 2010, 693–705.
- [23] S. Pradhan, J.T. Kjellstadli, and A.Hansen, „Variation of Elastic Energy ShowsReliable Signal of Upcoming Catastrophic Failure,” Frontiers in Physics, vol. 7, 2019, p. 106.
- [24] M. Monterrubio-Velascoet al., „A Stochastic Rupture Earthquake Code Based on the Fiber Bundle Model (TREMOL v0. 1): Application to Mexican Subduction Earthquakes.” Geoscientific Model Development, vol. 12, no. 5, 2019, pp. 1809–1831.
- [25] Shcherbakov, R. “On modeling of geophysical problems: a dissertation for degree of doctor of philosophy/Robert Shcherbakov.-Cornell university, 2002.-209 р.” (2002).
- [26] D.L. Turcotte, W.I. Newman, and R.Shcherbakov, „Micro and Macroscopic Models of Rock Fracture,” Geophysical Journal International, vol. 152, no. 3, 2003, pp. 718–728.
- [27] F. Bosiaet al., „Mesoscopic Modeling of Acoustic Emission Through an Energetic Approach,” International Journal of Solids and Structures, vol. 45, no. 22–23,2008, pp. 5856–5866.
- [28] S. Filonenko, V. Kalita, and A. Kosmach, „Destruction of Composite Material by Shear Load and Formation of Acoustic Radiation,” Aviation, vol. 16, no. 1, 2012, pp. 1–9.
- [29] S. Filonenkoand V.Stadychenko, „Influence of Loading Speed on Acoustic Emission During Destruction of a Composite by Von Mises Criterion,” American Journal of Mechanical and Materials Engineering, vol. 4, no.3, 2020, pp. 54–59.
- [30] S. Filonenkoand A.Stakhova, „Acoustic Emission at Properties Change of Composite Destructed by von Mises Criterion,” Electronics and Control Systems, vol. 1, no.67, 2021, pp. 54-60.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24e1229d-a618-4320-a3c0-bd851cb71596