
ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2019, VOL. 08, NO. 1, 27 – 32 
 

Enhancing business process event logs with software  

failure data 

Gruszczyński K. 
 

Department of Information Systems, Poznań University of Economics and Business, 

al. Niepodległości 10, PL 61 875 Poznań, Poland 

e-mail: k.gruszczynski@live.com  
 

Received March 01.2019: accepted March 22.2019 
 

Abstract. Process mining techniques allow for the 

analysis of the real process flow. This flow might be 

disturbed for many reasons, including software failures. It 

is also possible for failure occurrence to be the 

consequence of the faulty process execution. A method 

for measuring the harmfulness of the software failure 

regarding business processes executed by the user would 

be a valuable asset for quality and reliability 

improvement. In this paper, we take the first step towards 

developing this method by providing a tool for enhancing 

XES event logs with failure data. We begin with an 

introduction to this topic and background analysis in the 

field of failure classification and process mining techniques 

supporting failure analysis. Then we present our method for 

merging operational and failure data. By carrying out a 

case study based on real data, we evaluate our tool and 

present the aim of our future work. 

Keywords: business process modeling, exceptional 

process paths, software reliability, failure classification, 

process mining 

INTRODUCTION 

The aim of this paper is to provide a method for 

matching software failures with activities of a business 

process that could not be properly executed due to an 

unexpected software behavior. Using process mining 

techniques, it is possible to identify outliers in process 

instances that could be affected by a software defect. 

However, current process mining solutions do not support 

more advanced failure data analysis. With a tool for 

preparing event logs enriched with failure properties, like 

severity or occurrence date, we create possible paths for 

further research in this area.  

Our article consists of four parts. In this section, we 

present the background for our research. It is the literature 

study in the field of software failure classification and 

failure data analysis using process mining. In the second 

section, we describe our method for enhancing event logs 

with failure data, which resulted in developing a dedicated 

tool for supporting this operation. Then we present results 

of our case study that we carried out with data from KRUK 

Group, one of the leading enterprises on the European debt 

collection market. The last section presents not only the 

ideas for future research but also difficulties in using our 

method. 

Software failure classification. Collecting defects 

data is the key process for further analysis – preparing 

software reliability growth models, predicting error 

occurrences and estimating the cost of failures. Error 

information is gathered twofold: by application users and 

testers, who send requests with a description of 

encountered faults or by bug tracking mechanisms 

integrated with the developed software. In all cases, a well-

designed scheme with detailed attribute values is a highly 

desired property for engineers and analysts. In literature, 

there are many classification schemes prepared for the fault 

data (characterizing defects encountered during different 

stages of the software implementation, such as 

requirements analysis, coding or testing) and failures (data 

connected with a particular event that raised the problem) 

[12]. A very important step is the data preparation – in a 

simplified form, it includes consistency checking and 

preparation of the representative sample [17]. 

Discovering relations between failures and faults is an 

essential operation – it allows to analyze the consequences 

and causes of errors. Thus a good classification model for 

complete error data analysis ought to be a combination of 

both attribute schemes that are common for those two data 

sets. The attributes presented in [17] for the defect 

modification requests created during various stages of an 

optical transmission network element are phase detected, 

defect type, real defect location, defect trigger, barrier 

analysis info. The classification presented in [12] consists of 

elements that are the fault, failure, and environment specific. 

Attributes of fault are origin, activity responsible for 

detection, identification stage, cause, isolation, corrective 

action, root cause analysis (error introduction stage). Failure 

attributes are mode, date and time, operation in progress, 

trigger, duration, extent, criticality, affected component, a 

detection mechanism, recovery mechanism, restoration 

mechanism, prevention and circumventions 

recommendations. An additional classification for the 

environment provides extra information to compare data 

across different sites like server and client data and 

application-specific attributes – for example, the number of 

lines of code and testing methods. Freimut et al. in [7] 

presents categorization models and processes for industrial 

embedded systems and describes the HP Scheme 

classification that consists of three main elements: origin 

(activity that led to detection), type, mode (reason for being a 

defect). A two-step model for creating the failure 

mailto:k.gruszczynski@live.com


28 GRUSZCZYŃSKI K. 

 

categorization is presented in [16]. During the first stage of 

operation, attributes allowing to define symptoms of the 

failure are extracted. During the second step, the focus is on 

low-level attributes. A combination of the failure analysis 

and root cause analysis for high-return process improvement 

decisions is described in [9]. A common set of attributes is 

found there – origin (stage of software implementation), 

type, mode. When it comes to analyzing data from web 

applications, an example categorization is shown in [11] with 

logic and compatibility fault attributes. IEEE [15] developed 

the standard classification for software anomalies that covers 

attributes on the high level (i.e. type, mode, severity, 

description) and low level (i.e. date closed, date observed) of 

abstraction. It includes a relation between the fault and 

failure that uncovered defect. 

Between statistical data models and root cause 

analysis, there is a wide gap that orthogonal defect 

classification (ODC) aims to fill [6]. It provides better 

analysis by developing a measurement system based on 

semantics. ODC defines two main attributes for 

classification: defect type and trigger [18]. Moreover, it 

introduces goals for well-defined categorization: 

orthogonality, consistency across phases and uniformity 

across products. Although there are many successful 

implementations of this method in many different business 

environments, ODC is hardly adopted between different 

companies – each case requires its own development [7]. 

To create a good classification scheme, the 

involvement of both statistics and domain expert is needed. 

Both sides are the main source of information as they bring 

knowledge about the well-prepared categorization model 

and steps that were followed to fix the actual defect. Their 

cooperation is the core condition to benefit from the root 

cause analysis: lesser defects, fault detection in the early 

stage of the product lifecycle, lower fixing effort and 

increased effectiveness [17]. A successful fault and failure 

classification model provides many advantages for the 

whole process of software development: feedback for 

developing software design standards, guidance for 

software testers, evaluation of verification and validation 

tools, implementation of reliability models [3]. Still, some 

guidelines should be followed to achieve those goals, such 

as those defined in [12]: to minimize the number of 

categories, to create open classification framework, to 

create mutually exclusive categories within each field, 

separate fault, and failure data. 

Detecting failures with process mining. Software 

failure occurrence might cause an impact on the business 

process that is being executed using faulty application. 

Thus, in our approach, we find it highly valuable as for 

being able to discover automatically the consequence of the 

failure. With plenty of data being stored in information 

systems, process mining is the technique that turns this data 

into valuable insights [20] and allows to visualize how the 

business process was executed after the failure occurrence. 

Process mining techniques are based on event logs –

data describing how business processes are being executed. 

It allows to discover, monitor and improve real processes 

with extracting knowledge from the event log [20]. Each 

event log consists of traces – sets of activities that were 

performed during business process execution. When the 

software failure occurs, the effect might be observed in the 

trace. 

The usage of process mining techniques in solving 

outlier detection problem was covered in [8]. Authors 

proposed an algorithm based on clustering and took 

account of concurrency constructs. It requires firstly the 

modeling standard paths first so anomalies could be 

identified in accordance with those “normal” paths. 

The problem of discovering anomalies in event logs 

was also addressed in [2]. In this paper, the authors 

presented an approach based on existing tools available for 

process mining framework ProM. The proposed method 

classifies traces as anomalous or normal with respect to the 

so-called “appropriate model”. Similarly to [1, 8], this 

approach discovers anomalies based on the sequence of 

activities in a trace. 

Calderón-Ruiz and Sepúlveda in [4] took into account 

different types of potential failures: missing tasks, 

unnecessary tasks, different behavior (sequence of 

activities) and different timing (anomalous durations of 

activities). They used Performance Sequence Diagram 

Analysis [13] as it considers control flow and time aspects. 

As a result, they developed a plug-in to ProM that is able to 

identify potential causes of failures. 

Rogge-Solti and Kasneci in [14] focused their work on 

temporal anomalies in a group of activities. They 

implemented an anomaly detection plug-in to ProM. The 

approach was evaluated using data from a Dutch hospital. 

The goal of their research was to detect anomalies in traces 

and to investigate temporal anomalies in the entire case. 

In [5] process mining techniques were used to 

discover sources of failures in business processes, thus 

enhancing the root-cause analysis. Authors implemented a 

plug-in to ProM for filtering event logs. They classified 

sources of failures into three groups: missing tasks, 

unnecessary tasks, and different behavior. Their work 

presented a different approach to failure analysis using 

event log data, treating anomalies in traces not only 

because of failures but also as the possible source for 

anomalous behavior. 

Methods using process mining techniques in detecting 

outliers might be helpful in investigating failure data as the 

behavior and features of a trace in the event log might be 

affected by a failure. On the other side, every outlier in a 

business process execution might be a trigger for a defect 

occurrence. Still, there is a lack of research taking into 

account typical features of a software failure log consisting 

of data describing system state at the runtime. This data is 

considered valuable in our research and we present a 

method to work with it. 

MATERIALS AND METHODS 

In this section, we present our approach to event logs 

enhancement with data from failure tracking systems. We 

developed a tool Failure Analyst (FA) in the .NET 

Framework to improve the process of modifying event 

logs. FA’s main purpose to extend XES event logs (which 

is the correct file format to work with ProM Framework) 

with failure-related data. The user is able to connect proper 

failure types with process steps that are affected by them. 



ENHANCING BUSINESS PROCESS EVENT LOGS WITH SOFTWARE FAILURE DATA    29 
 

 

Providing this information, we make the first step towards 

more complex analysis: identifying the most error-prone 

business process activities, the most harmful failures, and 

the root cause analysis support. 

Two files are expected to be provided to FA to work 

on failure analysis – XES event log and failure log – 

currently supported format is XLS. Fig. 1 presents a view 

of the developed tool. FA extracts information from those 

files and does the following: 

1. Creates the list of available activities in the event log. 

2. Allows the user to map the failure log data to 

properties of the implemented failure classification 

scheme. 

3. Presents data from the failure log in a data grid with a 

calculated number of occurred failures for a given type, 

date of the first and last failure occurrence. 

Working with FA requires mapping each failure type 

to the proper process activity and selecting the severity of 

each failure. As a result, in the outcome file, FA adds to 

each XML node information regarding occurring failures. 

This file is a standard event log with additional information 

that is added similarly to other extensions available for 

XES (http://www.xes-standard.org/xesstandardextensions). 

It is ready to be loaded to ProM, yet plugins to work with 

extended failure information are planned to be developed. 

We implemented the simplified failure classification 

scheme from [15] to our tool. We selected 5 failure 

properties which, in our opinion, are the minimum set to 

describe every failure record: 

1. Failure ID – the unique identifier of failure 

occurrence. 

2. Title – makes the data readable for the user. 

3. Description – helps to identify the failure origin, 

i.e. stack trace. 

4. Observed date – the date of failure occurrence. 

5. Reference – identifier for the failures of the same 

type, grouping information. 

A case study presenting the usage of FA is described 

in the following section. In the article’s summary, we 

present our ideas for the further development of FA and the 

core problems we have discovered during the first use in a 

real-world scenario. 

RESULTS AND DISCUSSION 

We carried out a case study using operational and 

failure data from KRUK Group – a debt collecting 

company with subsidiaries in 7 European countries. The 

failure data was collected from the bug tracking system 

(BugTracker) database, where every exception that occurs 

during software execution is stored. The operational data 

that is related to the business processes were collected from 

the database of the core software being used in KRUK 

Group – Delfin.  

For our case study, we selected a real business process 

that we presented in our previous work  [19] – verification 

of the client’s email address data. In this paper, we made 

the next step with enabling process mining techniques on 

the data related to this process. Our first goal was to verify 

if the process model could be generated from the created 

event log (Fig. 2) using process mining. The second goal 

was to verify if this event log could be enhanced with 

software failure data for the purpose of future analysis. We 

used the ProM Framework and Failure Analyst software as 

the main tools for this case study. We selected the Alpha 

Algorithm [21] as the tool for creating the business 

process model. 

 

Fig. 1. The view of the developed tool – Failure Analyst. 



30 GRUSZCZYŃSKI K. 

 

In the next step, we created a Petri Net of the 

email verification business process using ProM. There 

were 8 unique process steps discovered by Alpha 

Algorithm (Fig. 3). Most activities are executed 

sequentially. The process ends with a gateway 

determining the result of the process instance. There 

are 3 possible process results – the user could pass the 

verification positively, submit incorrect data or the 

process instance could expire.  

During the next phase, we used the Failure Analyst 

tool to enhance the event log with data from 

BugTracker system. We extracted failure data to a 

spreadsheet where every failure occurrence was 

represented by a different row. There were 38 

properties describing every failure, each of them was 

inserted into a separate column in the spreadsheet. Our 

former work presents a more comprehensive 

description of the data extraction activity for the case 

study. 

Finally, we loaded the failure and event log data 

to the Failure Analyst. The most time-consuming 

activity was matching each failure type with the 

proper process step. It required expert’s knowledge 

and a thorough failure description analysis – based on 

the failure trace, where the name of application 

method raising the failure is written, it was possible to 

deduce the appropriate process activity. Also, we 

indicated the severity of every failure type. As a result, 

we received the event log data enhanced with 

additional information regarding failures that were 

affecting process activities. A sample process activity 

from the event log that was the most error-prone is 

presented in Fig. 4. 

Every process activity that was matched with a 

failure type, in the resulting event log received new 

nodes describing failure types. This event log is an 

initial artifact for future work on data analysis using 

developed tools and process mining techniques. 

CONCLUSIONS 

Software failures might notably affect the 

organization’s business processes [10]. In this paper, 

we aimed at creating a method for enhancing event 

logs with software failure data, thus allowing for the 

more advanced analysis in the field of measuring the 

failure impact. As a result, we developed a tool for 

merging failure and operational data that generates an 

enhanced event log. This event log is prepared to work 

with ProM Framework or any other tool supporting 

XES format. In our case study, we tested our tool with 

the real data from KRUK Group. 

We encountered several problems while using 

Failure Analyst and we treat them as a trigger for the 

further development of our tool. Firstly, the failure 

schema for XES should be enabled for broader usage. 

By publishing it as a standard for other XES users, 

other tools could be prepared to work with this solution. 

Secondly, it isn’t possible to match many process 

activities to one failure occurrence for now. During our 

case study, we encountered situations when one failure 

type affected more than one process step. Currently, it 

is also impossible to match a concrete process instance 

with a concrete failure. Our solution works only on 

failure classes and business process models. Working 

on concrete instances would allow for a more 

comprehensive root cause analysis with the possibility 

to observe the real process flow after the failure 

occurrence. 

 

Fig. 2. A sample trace from the generated event log. 



ENHANCING BUSINESS PROCESS EVENT LOGS WITH SOFTWARE FAILURE DATA    31 
 

 

Fig. 3. The generated Petri Net of the email verification process. 

 

Fig. 4. A sample activity in the XES event log enhanced with failure data. 



32 GRUSZCZYŃSKI K. 

 

Our future research will focus on developing 

methods to work with the results of this study. We find 

the process of failure data analysis one of the key 

indicators of quality assurance. Software failures raise 

the cost for the organizations and users working with 

the unreliable software. Our main objective in all our 

work is to measure this cost based on the business 

process distortion caused by failures. This research is an 

important step in achieving our goal by presenting a 

method for preparing the proper data for process 

analysis. 

REFERENCES 

1. Bezerra F., Weiner J. 2013. Algorithms for 

Anomaly Detection of Traces in Logs of Process 

Aware Information Systems. Journal Information 

Systems, 38: 33-44. 

2. Bezerra F., Weiner J., Van der Aalst W. M. P. 
2009. Anomaly Detection using Process Mining. 

Enterprise, Business-Process and Information 

Systems Modeling. Lecture Notes in Business 

Information Processing, 29: 149-161. 

3. Bowen J. B. 1980. Standard error classification to 

support software reliability assessment. Proceeding 

AFIPS '80 Proceedings of the May 19-22: 697-705. 

4. Calderón‐Ruiz G., Sepúlveda M. 2013. Automatic 

discovery of failures in business processes using 

Process Mining techniques. Available online at: 

https://pdfs.semanticscholar.org/69de/0d6965c25bc

5861c9ff2a87a1aff8279389b.pdf 

5. Calderón‐Ruiz G., Sepúlveda M. 2014, Improving 

Business Processes: Failure analysis with Process 

Mining. Available online at: 

https://www.researchgate.net/profile/Guillermo_Cal

deron-

Ruiz/publication/283344715_Discovering_the_sour

ce_of_failures_Process_mining_can_identify_probl

ems_while_saving_time_and_money/links/5776fe0

e08aeb9427e279492/Discovering-the-source-of-

failures-Process-mining-can-identify-problems-

while-saving-time-and-money.pdf 

6. Chillarege R., Bhandari I. S., Chaar J. K., 

Halliday M. J., Moebus D. S., Ray B. K., Wong 

M.-Y. 1992. Orthogonal defect classification - a 

concept for in-process measurements, Software 

Engineering, IEEE Transactions on Software 

Engineering, 18: 943-956. 

7. Freimut B., Denger F., Ketterer M. 2005. An 

Industrial Case Study of Implementing and 

Validating Defect Classification for Process 

Improvement and Quality Management. 11th IEEE 

Internat. Software Metrics Sympos. (METRICS'05). 

8. Ghionna L., Greco G., Guzzo A., Pontieri L. 
2008. Outlier Detection Techniques for Process 

Mining Applications, Foundations of Intelligent 

Systems: 150-159. 

9. Grady R. B. 1996. Software Failure Analysis for 

High-Return Process Improvement Decisions. 

Available online at: 

http://www.hpl.hp.com/hpjournal/96aug/aug96a2.p

df 

10. Gruszczyński K., Małyszko J. 2017. Wpływ 

awarii systemów informatycznych na wydajność 

procesów biznesowych przedsiębiorstwa. Studia 

Oeconomica Posnaniensia, 5: 63-78. 

11. Guo Y., Sampath S. 2008. Web application fault 

classification - an exploratory study. ESEM '08 

Proceedings of the Second ACM-IEEE international 

symposium on Empirical software engineering and 

measurement: 303-305. 

12. Hecht H., Wallace D. 1996. Error Classification 

and Analysis for High Integrity Software. Available 

online at: 

http://citeseerx.ist.psu.edu/viewdoc/download;jsessi

onid=2D1B52134F5299B30C177781223C1FF7?do

i=10.1.1.541.5697&rep=rep1&type=pdf 

13. Hornix P.T.G. 2007. Performance Analysis of 

Business Processes through Process Mining. 

Available online at: 

http://www.processmining.org/_media/publications/

hornix2007.pdf 

14. Rogge-Solti A., Kasneci G. 2014. Temporal 

Anomaly Detection in Business Processes. Business 

Process Management. BPM 2014. Lecture Notes in 

Computer Science, 8659: 233-249. 

15. IEEE 2010, Standard Classification for Software 

Anomalies. Available online at: 

http://www.ctestlabs.org/neoacm/1044_2009.pdf 

16. Jain S., Prinja R., Chandra A., Zhang Z.-L. 
2008. Failure Classification and Inference in Large-

Scale Systems: A Systematic Study of Failures in 

PlanetLab. Available online at: 

https://www.dtc.umn.edu/publications/reports/2008

_08.pdf 

17. Leszak M., Perry D. E., Stoll D. 2002. 

Classification and evaluation of defects in a project 

retrospective. The Journal of Systems and Software, 

61: 173–187. 

18. Lyu M. R. 1996. Handbook of Software Reliability 

Engineering. Available online at: 

http://www.cse.cuhk.edu.hk/~lyu/book/reliability/ 

19. Perkowski B., Gruszczyński K. 2018. The 

Benefits of Modeling Software-Related Exceptional 

Paths of Business Processes. Business Information 

Systems Workshops. Lecture Notes in Business 

Information Processing, 339: 77-85. 

20. Van der Aalst W. M. P. 2014. Process Mining in 

the Large: A Tutorial. Business Intelligence. eBISS 

2013. Lecture Notes in Business Information 

Processing, 172: 33-76. 

21. Van der Aalst W.M.P., Weijters  A.J.M.M., 

Maruster L. 2003. Workflow Mining: Discovering 

process models from event logs. IEEE Transactions 

on Knowledge and Data Engineering, 16: 1128-

1142. 


