PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of functionalized HAp-surface on β-Ti alloy using ball-burnishing assisted EDC process for biomedical application

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current research develops functionalized biocompatible hydroxyapatite (HAp)-rich surface on TNTZ alloy using a novel ball-burnishing assisted electric discharge cladding (BB-EDC) has been presented. The biomechanical properties of HAp-layer, such as mechanical properties, fatigue performance, in-vitro corrosion resistance, and bioactivity, have been investigated. The results showed that EDC-modified surfaces comprised discharge craters, globules, splats structures, and high ridges of redeposited metal. However, the BB-EDC process produced a relatively flat, smooth, dense surface with an average roughness value of 0.75 µm. The HAp-cladded layer by EDC and BB-EDC process featured an irregular surface range 25–30 µm thick and compact layer ranging 5–7 µm thick, respectively. The ball burnishing subjected caused plastic deformation on the developed layer that produced fine microstructure that increased surface hardness from 2.8 to 8.7 GPa. The functional HAp-cladded layer obtained by BB-EDC exhibit excellent corrosion properties. The dense and compact layer comprised a deformed microstructure with high residual stresses that offered high resistance to crack imitation propagation, thus resulting in better fatigue performance of β-phase TNTZ alloy. Furthermore, in-vitro bioactivity results showed that BB-EDC modified exhibit anti-inflammatory surface and promoted cell growth. The findings of the current research work offer up new possibilities for biomedical, automobile and aerospace industries to utilize the potential of BB-EDC as a new surface engineering technology to develop functionalized surfaces with improved surface characteristics and mechanical properties.
Rocznik
Strony
art. no. e192, 2022
Opis fizyczny
Bibliogr. 27 poz., fot., rys., wykr.
Twórcy
  • School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144411, India
  • Symbiosis Centre of Applied Artificial Intelligence, Symbiosis International (Deemed University), Lavale, Mulshi Taluka, Pune, Maharashtra 412115, India
  • Department of Civil and Mechanical Engineering, Curtin University Australia, Perth, WA, Australia
  • Adelaide Microscopy, The University of Adelaide, Adelaide, SA, Australia
autor
  • Department of Mechatronics Engineering, Kongu Engineering College, Erode, India
Bibliografia
  • [1] Kaur M, Singh K. Review on titanium and titanium-based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C. 2019;1(102):844–62.
  • [2] Kheradmandfard M, Kashani-Bozorg SF, Lee JS, Kim CL, Hanzaki AZ, Pyun YS, Cho SW, Amanov A, Kim DE. Significant improvement in cell adhesion and wear resistance of biomedical β-type titanium alloy through ultrasonic nanocrystal surface modification. J Alloy Compd. 2018;25(762):941–9.
  • [3] Anene F, Aiza J, Zainol I, Hanim A, Suraya MT. Additively manufactured titanium alloys and effect of hydroxyapatite coating for biomedical applications: a review. Proc Instit Mech Eng Part L. 2020;234(11):1450–60.
  • [4] Zhang LC, Chen LY, Wang L. Surface modification of titanium and titanium alloys: technologies, developments, and future interests. Adv Eng Mater. 2020;22(5):1901258.
  • [5] Azari R, Rezaie HR, Khavandi A. Effect of titanium dioxide intermediate layer on scratch and corrosion resistance of sol–gel-derived HA coating applied on Ti-6Al-4V substrate. Prog Bio-mater. 2021;10(4):259–69.
  • [6] Behera RR, Hasan A, Sankar MR, Pandey LM. Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility. Surf Coat Technol. 2018;25(352):420–36.
  • [7] Ramasamy P, Sundharam S. Microhardness and corrosion resistance of plasma sprayed bioceramic bilayer coated Ti-6Al-4V implants. J Aust Ceram Soc. 2021;57(2):605–13.
  • [8] Hamdi DA, Jiang ZT, No K, Rahman MM, Lee PC, Truc LN, Kim J, Altarawneh M, Thair L, Jumaa TA, Dlugogorski BZ. Biocompatibility study of multi-layered hydroxyapatite coatings synthesized on Ti-6Al-4V alloys by RF magnetron sputtering for prosthetic-orthopaedic implant applications. Appl Surf Sci. 2019;1(463):292–9.
  • [9] Kazemi M, Ahangarani S, Esmailian M, Shanaghi A. Investigation on the corrosion behavior and biocompatibility of Ti-6Al-4V implant coated with HA/TiN dual layer for medical applications. Surf Coat Technol. 2020;15(397): 126044.
  • [10] Kadhim MM, AlMashhadani HA, Hashim RD, Khadom AA, Salih KA, Salman AW. Effect of Sr/Mg co-substitution on corrosion resistance properties of hydroxyapatite coated on Ti–6Al–4V dental alloys. J Phys Chem Solids. 2022;1(161):110450.
  • [11] Al-Amin M, Abdul Rani AM, Abdu Aliyu AA, Abdul Razak MA, Hastuty S, Bryant MG. Powder mixed-EDM for potential biomedical applications: a critical review. Mater Manuf Processes. 2020;35(16):1789–811.
  • [12] Peng PW, Ou KL, Lin HC, Pan YN, Wang CH. Effect of electricaldischarging on formation of nanoporous biocompatible layer on titanium. J Alloy Compd. 2010;492(1–2):625–30.
  • [13] Harcuba P, Bačáková L, Stráský J, Bačáková M, Novotná K, Janeček M. Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics. J Mech Behav Biomed Mater. 2012;1(7):96–105.
  • [14] Stráský J, Havlíková J, Bačáková L, Harcuba P, Mhaede M, Janeček M. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants. Appl Surf Sci. 2013;15(281):73–8.
  • [15] Prakash C, Kansal HK, Pabla BS, Puri S. Processing and characterisation of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining. J Mater Eng Perform. 2015;24:3622–33. https://doi.org/10.1007/s11665-015-1619-6.
  • [16] Prakash C, Kansal HK, Pabla BS, Puri S. Powder mixed electric discharge machining an innovative surface modification technique to enhance fatigue performance and bioactivity of β-Ti implant for orthopaedics application. J Comput Inf Sci Eng. 2015;14(4):1–9. https://doi.org/10.1115/1.4033901.
  • [17] Ekmekci N, Ekmekci B. Electrical discharge machining of Ti6Al4V in hydroxyapatite powder mixed dielectric liquid. Mater Manuf Process. 2015. https://doi.org/10.1080/10426914.2015.1090591.
  • [18] Prakash C, Uddin MS. Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surf Coat Technol. 2017;15(326):134–45.
  • [19] Lin YC, Yan BH, Huang FY. Surface improvement using a combination of electrical discharge machining with ball burnish machining based on the Taguchi method. Int J Adv Manuf Technol. 2001;18(9):673–82.
  • [20] Yan BH, Wang CC, Chow HM, Lin YC. Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite. Int J Mach Tools Manuf. 2000;40(10):1403–21.
  • [21] Yan BH, Lin YC, Huang FY. Surface modification of Al–Zn–Mg alloy by combined electrical discharge machining with ball burnish machining. Int J Mach Tools Manuf. 2002;42(8):925–34.
  • [22] Courbon C, Sova A, Valiorgue F, Pascal H, Sijobert J, Kermouche G, Bertrand P, Rech J. Near surface transformations of stainless steel cold spray and laser cladding deposits after turning and ballburnishing. Surf Coat Technol. 2019;15(371):235–44.
  • [23] Ahmed AA, Mhaede M, Wollmann M, Wagner L. Effect of surface and bulk plastic deformations on the corrosion resistance and corrosion fatigue performance of AISI 316L. Surf Coat Technol. 2014;25(259):448–55.
  • [24] Ahmed AA, Mhaede M, Basha M, Wollmann M, Wagner L. The effect of shot peening parameters and hydroxyapatite coating on surface properties and corrosion behavior of medical grade AISI 316L stainless steel. Surf Coat Technol. 2015;25(280):347–58.
  • [25] de Oliveira BJ, Campanelli LC, Oliveira DP, de Bribean Guerra AP, Bolfarini C. Surface characterisation and fatigue performance of a chemical-etched Ti-6Al-4V femoral stem for cementless hip arthroplasty. Surf Coat Technol. 2017;15(309):1126–34.
  • [26] Li H, Ma Y, Zhao Z, Tian Y. Fatigue behavior of plasma sprayed structural-grade hydroxyapatite coating under simulated body fluids. Surf Coat Technol. 2019;25(368):110–8.
  • [27] Ou SF, Wang CY. Effects of bioceramic particles in dielectric of powder-mixed electrical discharge machining on machining and surface characteristics of titanium alloys. J Mater Process Technol. 2017;245:70–9. https://doi.org/10.1016/j.jmatprotec.2017.02.018.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24d5a90f-2dc4-4145-8d9b-d89e074baa38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.