PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical and isotopical characterization of groundwater in the basin of Guelma, North-East of Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Fizyczna, chemiczna i izotopowa charakterystyka wód gruntowych w basenie Guelma w północnowschodniej Algierii
Języki publikacji
EN
Abstrakty
EN
Water quality is an important criterion for evaluating the suitability of water for drinking and domestic purpose. The main objective of this study was to investigate the physicochemical characterization of groundwater for drinking water consumption. Ten captured sources were selected from three aquifers including the Guelma Mio-Plio-Quaternary alluvial basin; the Senonian Heliopolis Neritic limestone aquifer, and the Eocene limestones of Ras El Agba-Sellaoua aquifer. The analyses concerned the periods of high water in May 2017 and low water in August 2017. Twelve parameters were determined for the water samples: pH, T (°C), EC, Ca2+, Mg2+, Na+, K+, Cl, HCO3, SO42–, NO3, TH (hydrotimetric degree), TAT (total alkalinity titration). The interpretation of the various analytical results allowed the determination of the chemical facies and the classification of the groundwater aquifers as follows: (i) in the alluvial layer, the gypsiferous marl substratum and the clays of the three terraces (high, medium and low) have given the water a chlorinated calcium chemical facies in the east part of the study area and travertines feeding partly alluvial layer, and have given a bicarbonated calcium water facies in the west, (ii) in the Senonian of Heliopolis limestone and Eocene carbonate formations of Ras El Agba- -Sellaoua, the chemical facies are calcium bicarbonate. Water isotopes (δ18O and δD) helped to determine the origin of groundwater. Overall, the groundwater in the area is hard and has significant to excessive mineralization. It is progressively degraded in the direction of flow, especially in the Guelma alluvial aquifer.
PL
Jakość wody jest ważnym kryterium oceny jej przydatności do picia i potrzeb domowych. Celem pracy było zbadanie fizycznych i chemicznych właściwości wody przeznaczonej do konsumpcji. Do badań wybrano dziesięć ujęć wody zlokalizowanych w trzech poziomach wodonośnych: aluwialny basen mioceńsko-plioceńsko-czwartorzędowy Guelma, wapienny poziom z okresu późnej kredy i poziom eoceńskich wapieni w Ras El Agba-Sellaoua. Analizy prowadzono w okresie wysokiej wody w maju 2017 r. i niskiej wody w sierpniu 2017 r. W próbkach wody oznaczono 12 parametrów: pH, T (°C), EC (przewodnictwo), Ca2+, Mg2+, Na+, K+, Cl–3 , SO42–, NO3, TH (całkowita twardość), TAC (całkowita alkaliczność). Interpretacja uzyskanych wyników umożliwiła wydzielenie grup chemicznych i klasyfikację poziomów wodonośnych w następujący sposób: (i) strefa aluwialna, gipsowo-wapienne podłoże i iły trzech tarasów (wysoki, średni i niski) – wody grupy chlorkowo-wapniowej we wschodniej części badanego obszaru i wody wodorowęglanowo-wapniowe w zachodniej części, (ii) wapienie późnej kredy i eoceńskie utwory węglanowe w Ras El Agba-Sellaoua – wody o charakterze wodorowęglanowo-wapniowym. Analiza izotopowa (δO18 i δD) pozwoliła ustalić pochodzenie wód gruntowych. Generalnie wody gruntowe badanego obszaru są twarde i charakteryzują się wysoką bądź nadmierną mineralizacją. Wody ulegają stopniowej degradacji w kierunku przepływu, szczególnie w aluwialnym poziomie wodonośnym Guelma.
Wydawca
Rocznik
Tom
Strony
33--41
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • University of Ferhat Abbas Setif 1, Department of Earth Sciences, Setif, 54, Coop. Immob. Bat. 19, N° 06. O. Maiz, 24000, Guelma, Algeria
  • Badji Mokhtar University, Annaba, Algeria
Bibliografia
  • ABH-CSM 2005. Qualité des eaux souterraines dans le bassin de la Seybouse [Groundwater quality in the Seybouse Basin]. Agence de Bassin Hydrographique Constantinois-Seybouse-Mellegue. Internal Report pp. 46.
  • ALGEO 1997. Etude géophysique de la plaine alluvionnaire de Guelma [Geophysical study of the alluvial plain of Guelma]. Internal Report pp. 35.
  • BAHROUN S., CHAIB W. 2017. The quality of surface waters of the dam reservoir Mexa, Northeast of Algeria. Journal of Water and Land Development. Vol. 34 (VII–IX) p. 11–19. DOI 10.1515/jwld-2017-0034.
  • BANO N. 2017. Assessment of physicochemical characteristics of groundwater quality used for drinking water supply of Firozabad City, India using index method. Journal of Applied Science and Environmental Management. Vol. 21. Iss. 4 p. 728–731.
  • BENRABAH S., ATTOUI B., HANNOUCHE M. 2016. Characterization of groundwater quality destined for drinking water supply of Khenchela City (eastern Algeria). Journal of Water and Land Development. Vol. 30 (VII–IX) p. 13–20. DOI 10.1515/jwld-2016-0016.
  • BESSER H., MOKADEM N., REDHAOUNIA B., HADJI R., HAMAD A., HAMED Y. 2018. Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal field of southwestern Tunisia. Euro-Mediterranean Journal for Environmental Integration. Vol. 3. Iss. 16. DOI 10.1007/s41207-018-0055-z.
  • CHAVAN B.L., ZAMBARE N.S. 2014. Physicochemical analysis of groundwater samples in Solapur City, Maharashtra, India. International Journal of Research in Civil Engineering Architecture and Design. Vol. 2. Iss. 3 p. 7–12.
  • CRAIG H. 1961. Isotopic variations in meteoric waters. Sciences. Vol. 133 p. 1702–1703.
  • CRISS R.E. 1999. Principles of stable isotope distribution. New York. Oxford University Press. ISBN 0195117751 pp. 254.
  • DAHOUA L., SAVENKO S.V., HADJI R. 2017. GIS-based technic for roadside-slope stability assessment: An bivariate approach for A1 East-West highway, North Algeria. Mining Science. Vol. 24 p. 81–91.
  • DANSGRAAD W. 1964. Stable isotopes in precipitation. Tellus. Vol. 16 p. 436–468.
  • DARAPU S.S.K., SUDHAKAR E.B., KRISHNA K.S.R., RAO P.V., SHEKHAR M.C. 2011. Determining water quality index for the evaluation of water quality of river. International Journal of Engineering Research and applications. Vol. 1. Iss. 2 p. 174–182.
  • DEMDOUM A., HAMED Y., FEKI M., HADJI R., DJEBBAR M. 2015. Multi-tracer investigation of groundwater in El Eulma Basin (Northwestern Algeria), North Africa. Arabian Journal of Geosciences. Vol. 8. Iss. 5 p. 3321–3333.
  • DERRADJI F., KHERICI N., ROMEO M., CARUBA R. 2004. Aptitude des eaux de la vallée de la Seybouse à l’irrigation (Nord-Est algérien) [Suitability of the waters of the Seybouse Valley for irrigation (North-East of Algeria)]. Sécheresse. Vol. 15 p. 353–360.
  • DETAY M. 1997. La gestion active des aquifères [Active management of aquifers]. Paris. Masson. ISBN 2225856230 pp. 440.
  • DJABRI L. 1996. Mécanismes de la pollution et vulnérabilité des eaux de la Seybouse, Origines géologiques, industrielles, agricoles et urbaines [Mechanisms of pollution and vulnerability of Seybouse waters, geological, industrial, agricultural and urban origins]. PhD thesis. Es Sciences. Annaba, Algeria. University of Badji Mokhtar pp. 261.
  • DU M., ZAVATTEROA E., MAA Q., DELESTREB O., GOURBESVILLEA P., FOUCHE O. 2016. 3D hydraulic modeling of a complex alluvial aquifer for groundwater resource management. Procedia Engineering. Vol. 154 p. 340–347.
  • DURFOR C.N., BECKER E. 1964. Public water supplies of the 100 largest cities in the US. US-Geological Survey Water Supply Paper. Vol. 1812 pp. 364.
  • ETIM E.E., ODOH R., ITODO A.U., UMOH S.D., LAWAL U. 2013. Water quality index for the assessment of water quality from different sources in the Niger Delta Region of Nigeria. Frontiers in Science. Vol. 3. Iss. 3 p. 89–95.
  • HADJI R., LIMANI Y., BOUMAZBEUR A., DEMDOUM A., ZIGHMI K., ZAHRI F., CHOUABI A. 2014. Climate change and their influence on shrinkage – swelling clays susceptibility in a semiarid zone: A case study of Souk Ahras municipality, NEAlgeria. Desalination and Water Treatment. Vol. 52. Iss. 12 p. 2057–2072.
  • HAMAD A., BAALI F., HADJI R., ZERROUKI H., BESSER H., MOKADEM N., HAMED Y. 2018b. Hydrogeochemical characterization of water mineralization in Tebessa-Kasserine karst system (Tuniso-Algerian Transboundry basin). Euro-Mediterranean Journal for Environmental Integration. Vol. 3. Iss. 1. DOI 10.1007/s41207-017-0045-6.
  • HAMAD A., HADJI R., BÂALI F., HOUDA B., REDHAOUNIA B., ZIGHMI K., HAMED Y. 2018a. Conceptual model for karstic aquifers by combined analysis of GIS, chemical, thermal, and isotopic tools in Tuniso-Algerian transboundary basin. Arabian Journal of Geosciences. Vol. 11. Iss. 15.
  • HAMED Y., AHMADI R., HADJI R., MOKADEM N., BEN DHIA H., ALI W. 2014. Groundwater evolution of the Continental Intercalaire aquifer of Southern Tunisia and a part of Southern Algeria: Use of geochemical and isotopic indicators. Desalination and Water Treatment. Vol. 25. Iss. 12 p. 1990–1996.
  • HAMED Y., HADJI R., REDHAOUNIA B., ZIGHMI K., BÂALI F., EL GAYAR A. 2018. Climate impact on surface and groundwater in North Africa: A global synthesis of findings and recommendations. Euro-Mediterranean Journal for Environmental Integration. Vol. 3. Iss. 1. DOI 10.1007/s41207-018-0067-8.
  • HAMED Y., REDHAOUNIA B., BEN SÂAD A., HADJI R., ZAHRI F., EL HIDOURI B. 2017a. Groundwater inrush caused by the fault reactivation and the climate impact in the mining Gafsa Basin (Southwestern Tunisia). Journal of Tethys. Vol. 5. Iss. 2 p. 154–164.
  • HAMED Y., REDHAOUNIA B., BEN SÂAD A., HADJI R., ZAHRI F., ZIGHMI K. 2017b. Hydrothermal waters from karst aquifer: Case study of the Trozza basin (Central Tunisia). Journal of Tethys. Vol. 5. Iss. 1 p. 33–44.
  • HÉLÈNE C.J., KAMEL Z., YVES T., ABDELKRIM D. 2001. Caractérisation isotopique des pluies en Tunisie. Essai de typologie dans la région de Sfax [Isotopic characterization of rainfall in Tunisia. Typology test in the region of Sfax]. Comptes Rendus de l'Académie des Sciences – Series IIA – Earth and Planetary Science. Elsevier. Vol. 333. Iss. 10 p. 625–631.
  • IYASELE J.U., IDIATA D.J. 2015. Investigation of the relationship between electrical conductivity and total dissolved solids for mono-valent, di-valent and tri-valent metal compounds. International Journal of Engineering Research and Reviews. Vol. 3. Iss. 1 p. 40–48.
  • JAIN P., SHARMA J.D., SOHU D., SHARMA P. 2005. Chemical analysis of drinking water of villages of Sanganer Tehsil, Jaipur District. International Journal of Environmental Science and Technology. Vol. 2. Iss. 4 p. 373–379.
  • JOARDER M.A., RAIHAN F., ALAM J.B., HASANUZZAMAN S. 2008. Regression analysis of ground water quality data of Sunamjang district, Bangladesh. International Journal of Environmental Research. Vol. 2 p. 291–296.
  • KELMENDI M., KADRIU S., SADIKU M., ALIU M., SADRIU E., HYSENI S.M. 2018. Assessment of drinking water quality of Kopiliq village in Skenderaj, Kosovo. Journal of Water and Land Development. Vol. 39 (X–XII) p. 61–65. DOI 10.2478/jwld-2018-0059.
  • LAHONDERE J.C. 1987. Les séries ultra telliennes d’Algérie nord orientale et les formations environnantes dans leur cadre structural [The ultra-tellian series of northeastern Algeria and the surrounding formations in their structural framework]. PhD thesis. Sciences. Toulouse, France. University of Paul Sabatier pp. 242.
  • LEDESMA-RUIZA R., MAHLKNECHTA J. 2017. Geochemical and isotopic characterization of groundwater in Tecate, Baja California, Mexico. Procedia Earth and Planetary Science. Vol. 17 p. 516–519.
  • LEELAVATHI C., SAINATH U.K., RABBANI A.K. 2016. Physicochemical characterization of ground water of Autonagar, Vijayawada, Krishna district. International Journal of Engineering Development and Research. Vol. 4. Iss. 2 p. 1324–1328.
  • MOHAMMAD A.H., ABDULLAT G., ALZUGHOUL K. 2017. Changes in total dissolved solids concentration during infiltration through soils (rain, fresh groundwater and treated wastewater). Journal of Environmental Protection. Vol. 8 p. 34–41.
  • MOKADEM N., DEMDOUM A., HAMED Y., BOURI S., HADJI R., BOYCE A., LAOUAR R., SAAD A. 2016. Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: Northern Gafsa basin – Central Tunisia. Journal of African Earth Sciences. Vol. 115 p. 174–191.
  • MOUICI R., BAALI F., HADJI R., BOUBAYA D., AUDRA P., FEHDI C.É., CAILHOL D., JAILLET S., ARFIB B. 2017. Geophysical, geotechnical, and speleologic assessment for karst-sinkhole collapse genesis in Cheria plateau (NE Algeria). Mining Science. Vol. 24 p. 59–71.
  • ODW 1987. Estimated national occurrence and exposure to nitrate and nitrite in public drinking water supplies. Office of Drinking Water. US Environmental Protection Agency pp. 156.
  • PLATA A. 1994. Composicion isotopic de las precipitaciones subterraneas de la Peninsula Iberica [Isotopic composition of the underground precipitations of the Iberian Peninsula]. Madrid, Spain. Centro de Estudios y Experimentacio de Obras Publica. Vol. 39. ISBN 84-7790-177-5 pp. 139.
  • RAOULT J.F. 1975. Evolution paléogéogrphique et structurale de la chaine alpine entre le golf de Skikda et Constantine (Algérie orientale) [Palaeogeographical and structural evolution of the Alpine chain between the Skikda golf course and Constantine (Eastern Algeria)]. Bulletin de la Societe Geologique de France. Ser. 7. Vol. XVII (3) p. 394–409.
  • REMENIERAS G. 1986. L’hydrologie de l’ingénieur [The hydrology of the engineer]. 2nd ed. Paris. Eyrolles. ISBN 978-2-212-05220-6 pp. 462.
  • RODIER J. 2009. L’analyse de l’eau; eaux naturelles, eaux résiduelles, eaux de mer. Chimie, physico chimie, microbiologie, biologie, interprétation des résultats [Water analysis; natural waters, wastewater, seawater. chemistry, physico-chemistry, microbiology, biology, interpretation of results]. 8th ed. Paris. Dunod. pp. 1383.
  • ROUABHIA A., DJABRI L., HADJI R., BAALI F., FAHDI CH., HANNI A. 2012. Geochemical characterization of groundwater from shallow aquifer surrounding Fetzara Lake NE Algeria. Arabian Journal of Geosciences. Vol. 5. Iss. 1 p. 1–13.
  • ROZANSKI K., ARAGUAS L., GONFIANTINI R. 1992. Relation between long-term trend of oxygen-18 isotope composition of precipitation and climate. Science. Vol. 258 p. 982–985.
  • SIEGENTHALER V., OESCHGER H. 1980. 18O in precipitation: correlation with temperature and altitude on a regional scale. Nature. Vol. 285 p. 314–316.
  • SINGH L. 2010. Environmental geography. New Delhi. APH Publ. Corp. ISBN 978-8131306994 pp. 473.
  • Sogreah 2005. Etude hydrogéologique de la nappe alluvionnaire de Guelma [Hydrogeological study of the Guelma alluvial aquifer]. Internal report. Bagnolet. Société française d’ingénierie p. 318–333.
  • VILA J.M. 1980. La chaine alpine d’Algérie orientale et des confins Algéro-Tunisiens [The alpine chain of eastern Algeria and the Algerian-Tunisian borders]. PhD Thesis. Natural Sciences. Paris 3, France pp. 665.
  • VILA J.M., BUSNARDO R., DEVRIES A., MAGNE J., SIGAL J. 1968. Données stratigraphiques sur la série renversée et charriée du Djebel Bousbaa et étude de son cadre structural (région de Guelma, constantinois, Algérie) [Stratigraphic data on the reversed and carried series of Jebel Bousbaa and study of its structural framework (region of Guelma, Constantinois, Algeria)]. B.S.G. Paris France. Vol. 7. Iss. 10 p. 206–212.
  • WHO 2005. Célébration de la décennie internationale d’action l’eau, source de vie (2005–2015) [Celebrating the international decade of water action, source of life (2005–2015)]. World Health Organization. Guide of sensibilization pp. 34.
  • YURTSEVER Y., GAT J.R. 1981. Atmospheric waters in stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Technical Report Series. No. 210. Vienna. IAEA p. 103–142.
  • ZAHRI F., BOUKELLOUL M., HADJI R., TALHI K. 2016. Slope stability analysis in open pit mines of Jebel Gustar career, NE Algeria – A multi-steps approach. Mining Science. Vol. 23 p. 137−146.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24d54070-e354-43a9-98de-99cf6453f2fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.