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Temporally and spatially unstable thermal conditions lead to inhomogeneous thermoelastic changes in the workpiece geometry. 

Consequently, non-negligible geometric deviations are evident, especially when measuring large workpieces with narrow 

tolerances, which often take place in non-climatized production environments and thus make thermal monitoring indispensable. 

Accurate determination of the thermoelastic behaviour for complex and large geometries is a challenging task with 

computationally effortful or less accurate existing solutions. Thus, the development of innovative measurement and modelling 

approaches is subject of current research, whereat physical validation is a prerequisite. Therefore, the authors developed  

a method, enabling the emulation of typical process heat cycles on a turbine housing in combination with a geometric 

measurement system. The idea is to provide reproducible and reversible thermal conditions on a representative large workpiece 

and to investigate the resulting geometric deformation in an economically viable way. Throughout this study, an analogy test 

rig is presented, integrating different temperature sensors, two geometric measurement systems and thermal deformation 

models into one demonstrator. The demonstrator's first applications show insightful results, revealing accordance, but also 

unexpected deviations between the predicted and measured quantities. Moreover, it provides great potential for validation  

of more complex modelling approaches and innovative thermal condition monitoring systems for large precision workpieces. 

1. INTRODUCTION 

Thermal influences can account for a majority of errors in precision manufacturing. 

Therefore many research activities are dedicated to mitigate such effects [1–4]. Temporarily 

changing workpiece temperatures highly influence final part quality in production or accuracy 

in measurement processes [5–7]. Hence, temperature is included in multiple metrology 

standards, e.g. ISO 15530-1 and ISO 10360-2 for CMMs [8, 9]. For precise measurements, 

preventing thermal influences by measuring inside a temperature-controlled chamber and 

tempering the workpiece before measurement is the gold standard [10, 11]. Especially for 

large workpieces driving energy transition, e.g. wind, gas or hydrogen turbines, where 
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geometric inspection takes place in non-controlled environments, thermal workpiece effects 

can significantly contribute to measurement uncertainty. This effect is leveraged by relatively 

small ratios of tolerance and nominal dimension of about 1:50,000 and higher considering 

workpiece sizes of up to 15 m. [7] 

Availability and practicability of calibrated workpieces for measurement correction (see 

ISO 15530-3 [12]) is limited for large workpieces. While steady state linear thermal expansion 

can be compensated for, also involving errors due to uncertainty in thermal expansion, 

environmental temperature variation is an additional uncertainty source [10]. The same 

applies to internal heat and thermal gradients within the workpiece while being more difficult 

to quantify at all. In terms of tolerance management, a high share of unknown systematic 

measurement deviations must be expected, which have to be estimated conservatively and 

thus can decrease overall manufacturing tolerance. Spatial thermal gradients within the work-

piece increase in relevance with growing workpiece size, mass and precision requirements. 

This is particularly challenging for on-machine measurements, where geometric inspections 

are performed in shopfloor environments and cycle times between manufacturing and 

measurements are shortened to drive operational efficiency [13, 14]. Thus, stored heat and 

thermal exchange with the environment is dynamic and difficult to quantify. 

The following paper describes an experimental setup aiming to quantify aforementioned 

effects with an exemplary test workpiece. It thereby addresses the need for a sustainable, 

reproducible solution to systematically investigate thermoelastic deviations without reject 

production of costly, resource intensive parts, and illustrates a challenge in shopfloor 

measurements of large workpieces. 

2. THERMOELASTIC WORKPIECE MODELLING 

The state of the art regarding thermoelastic workpiece compensation for the characte-

ristic evaluation of measurement deviations is limited [7]. Existing approaches are mainly 

composed of three-dimensional linear scaling or the usage of calibrated workpieces whereat 

steady, homogeneous temperature distributions are assumed [15].  

Further improvements on traditional scaling consider selection, positioning, and 

weighting of individual temperature sensors, whereas supplemental refinements address  

the transformation for different sub-parts of features of a measurand. Separate transforms, 

derived for each section, can then be interpolated across the entire measurand. [6] 

More complex solutions, e.g. FEM, can reach superior accuracies, but suffer from high 

computational efforts for large problems and often uncertain initial and boundary conditions 

describing thermal and mechanical loads on the workpiece. FEM approaches are used in 

particular for chipping process simulations [16–19]. As thermal boundary conditions can be 

undetermined and change during the inspection process in thermally uncontrolled 

environments they must be incorporated into the model, which is a non-trivial task.  

An upcoming branch of research aims to combine scientific knowledge of physics-based 

models with neural networks to leverage the output of physics-based model simulations along 

with observational features, which can be provided by sensors, in a hybrid modeling setup to 

generate predictions [20]. 
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Considering the simulation of thermoelastic workpiece behavior during measurements, 

the initial and boundary conditions are almost the same as for machining processes. They may 

cover ambient temperature profiles, initial workpiece temperature distributions as well as heat 

transfers besides mechanical loads, such as gravity or fixing. Thus, physical modelling 

includes unsteady, three-dimensional heat conduction with convection and radiation coupled 

with thermal expansion [21]. For measurement processes overall temperature changes and 

gradients are generally smaller than for machining processes, hence small environmental 

condition variations are more relevant than for machining processes. 

3. CONCEPTION OF THERMAL TEST RIG 

Testing is a key element in the development of engineering methods and products. There 

are three basic types, which can be broken down into field testing, analogy testing and 

simulation. Field testing is generally considered to be the most accurate and elaborate method. 

Its significance can be explained by the fact that product tests are performed in the actual 

context in which it will be used. Thus, it is the most time and resource consuming method. 

Especially in large scale manufacturing, field testing can be very elaborate and cost-intensive 

due to high unit costs, expensive machine times and significant handling efforts. 

Analogy testing, as cost-effective alternative, seeks to represent the reality by means  

of abstracted test rigs, which can generate realistic results and at the same time be less 

burdensome and resource-consuming. Simulation, as the third and most recent technology, 

foregoes physical testing and emulates real testing by using computational power. Thus, it is 

usually the fastest and cost-efficient way. Nevertheless, it is based on algorithms fed with 

multiple, often estimated parameters, which highly affect the accuracy of results. Therefore, 

simulation parameters must be set carefully, and results validated against real measurements. 

In this paper an analogy test rig is presented, enabling reversible heating and cooling 

cycles on a turbine housing using heat pads as external heat sources and measure dimensional 

displacements over changing temperature profiles in parallel. The setup emulates heat fluxes 

on functional surfaces typically coming from a localized chipping process and thus aims at 

the systematic investigation of the thermoelastic behavior of a large workpiece in a shopfloor 

environment. 

3.1. MENT SYSTEMS AND PROOF OF SUITABILITY 

Throughout this study, two different testing setups were implemented. The first testing 

setup is illustrated in Fig. . It is comprised of four major components, namely: Turbine 

housing, mobile coordinate measurement machine (mCMM), heat pads and controller. Since 

high surface roughness of untreated cast iron adversely affects the uncertainty of tactile 

measurements, counterbores were drilled for dedicated positions (B1, B13, B24). The essen-

tial characteristics of utilized components can be inferred from Table. Blue marked dots (see 

Fig. ) represent wall-incorporated sensors, which monitor temperature distributions over 
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respective wall cross-sections. For any position, three temperature sensors are equidistantly 

distributed for the different height dependent wall thicknesses, varying between 32 mm – 

70 mm. 

 
Fig. 1. Experimental setup with mCMM. Lines show mCMM measurements. Blue dots represent radially 

distributed temperature measurement points (see Fig. 2) 

Table 1. Experimental setup components. 2.1 is used with the first experiment, 2.2 with the second experiment 

 Component Characteristics 

1 

Turbine housing 

Material: Cast iron C45E, CTE (literature):11.1 ppm/K, 

Weight: 1500 kg  

Øinside = 1425 mm  

A: 7000000 mm2 

2.1 

mCMM 

Type: Hexagon Absolute Arm 85 

MPE = 23 μm (𝑈𝑀𝑃𝐸 = 𝑀𝑃𝐸/√3 = 13.3 µ𝑚) [22] 

range: 2000 mm 

2.2 Laser tracker 

 

Type: API Radian 

MPE = 28 µm (𝑈𝑀𝑃𝐸 = 16.2 µ𝑚) 

3 

9× Heat pads 

Dimensions: 200×200×2 mm³, Voltage: 12 V,  

Power: 9×200 W = 1800 W 

Maximum temperature: 190℃ 

4 Heat pad controller Type: ESP 8266 NodeMCU 

The second setup is shown in Fig. 2 and mainly differs in the measurement device with 

respective measurement points.  

 

Fig. 2. Sensor and SMR positions in the laser tracker workpiece experiment 
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Instead of the manually operated measurement arm an API Radian laser tracker is used 

to measure the center positions of 8 spherically mounted retroreflectors (SMRs), see green 

dots in Fig. 2. Red marked dots highlight surface temperature sensors. 

3.2. HEAT GENERATION UNIT 

Ensuring that heat generated deformations are detectable with available measurement 

systems, a proof of suitability is given with respect to chosen heat sources. As a conservative 

estimate given by the authors, the theoretical expected thermal expansion should exceed  

the maximum measurement uncertainty at least by factor 5, representing a cpk level of 1.67. 

Thus, a probability of less than 1 ppm for measuring wrong length differences due to 

dispersion of the metrology system can be inferred. Consequently, a preliminary rough 

estimation is calculated for the inner diameter. The analysis was done for the laser tracker 

measurements, where slightly higher uncertainties can be expected than for the mCMM 

according to manufacturer information: 

 5 ∙ 𝑈 < Ø𝑖𝑛𝑠𝑖𝑑𝑒 ∙ ∆𝑇 ∙ 𝐶𝑇𝐸 (1) 

where: 𝑈 – measurement uncertainty of laser tracker, CTE – coefficient of thermal 
expansion.  

It should be noted that preliminary, empirical determined uncertainties for repeated 

distance measurements were smaller than provided manufacturer information (Fig. ) for both 

utilized measurement systems (Umax < 10 µm < UMPE). This is due to anisotropic and task 

specific behavior of metrology systems. Taking that into account, detectable thermoelastic 

deformation can be assumed for a temperature difference of at least 3 K using (1). The power 

of heat pads must provide the necessary heat flux: 

 𝑃 > 𝐴 ∙ ∆𝑇 ∙ 𝛼 (2) 

where: P – introduced power, A – workpiece surface, ∆𝑇– aimed temperature difference, 
α – heat transfer coefficient 

For heat loss due to convection and radiation a literature-based heat transfer coefficient  

of α = αcon + αrad = 18 
W

m2K
 is assumed. Taking mentioned variables into account, a power 

of at least 420 W is required to generate the envisaged temperature difference. Hence,  

the chosen setup of 9 heat pads will exceed calculated minimum power by factor 4 on the 

assumption of small loss.  

4. DESIGN OF EXPERIMENTS 

For physical investigation, two different experimental setups were realized, differing in 

testing time, collected measurement points, amount of temperature sensors, and utilized 

measurement systems, as introduced in 3.2. The main differences can be taken from Table 2. 
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Table 2. Comparison for mCMM and laser tracker setup 

 Setup 1 – mCMM Setup 2 – laser tracker 

Heat source 9 heat pads, 200 W each 9 heat pads, 200 W each 

Warm-up time 190 min 400 min 

Cool-down time 290 min 270 min 

Measuring 

strategy 

mode: manual 

features: 2 distances  

Collection: 10 repetitions per point 

Measurement runs: 5 runs over 360 min 

mode: automatic 

features: 8 distances 

Collection: ca. 3000 repetitions per point 

Measurement runs: 336 runs over 770 min 

Temperature 

sensors 
36 sensors 14 sensors 

4.1. MCMM MEASUREMENT STRATEGY AND RESULTS 

The experiments with mCMM are conducted in a non-climatized environment, where 

drafts due to open doors, hall gates can occur. Before any test run, the measurement system 

is referenced over a dedicated set of points on the workpiece that build the local coordinate 

system. This decouples thermal effects from the workpiece to the mounted measurement 

system, which is relevant for absolute coordinate measurements, but has no effect on 

presented results, since only relative position changes are investigated. 5 measurement runs 

are collected over 6 hours – 1 run for reference temperature, 2 runs during heating up and 2 

runs during cooling down. For any measurement result, the mean value of 10 repeated 

measurements is determined.  

In Fig. 3 the development of inner temperature distribution over time is illustrated. 

 
Fig. 3. Temperature over time for workpiece internal sensors. The sensors are radially distributed within  

the workpiece wall with sensors „i” located near the inner wall, „c” in the center and „o” near the outer wall,  

see Fig. 1 for sensor positions 

Especially for the middle, where sensors are more closely located to the heat sources, 

radial inhomogeneities of greater than 3 K are evident. The homogenization time during 

cooling down, depicted in detail view, reveals that after 60 minutes temperature differences 



90 D. Emonts et al./Journal of Machine Engineering, 2022, No. 1, 84–95  

 

of 1 K still occur, even though the workpiece can be considered as thin-walled part with high 

surface to mass ratio. For the bottom and top section, where sensors are mounted further from 

the heat pads, temperature differences over wall cross-sections can be clearly observed as 

well, but in smaller amplitudes. Thus, it is demonstrating an additional issue with compensa-

tion based on surface temperature measurements.  

As described in Table 1, a total of 36 temperature sensors was utilized. For the purpose  

of transparency, solely surface sensor measurements close to the measurement points B1, B13 

and B24 are presented. The results for geometric measurements and temperatures over time 

are depicted in Fig. 4, where red and blue backgrounds imply heating and cooling cycles 

respectively. 

 

 

Fig. 4. Measured versus theoretical distance changes over time and respective temperatures including standard 

deviations for each point amplified by factor 2 for better visibility 

As expected, the workpiece deforms due to temperature. For distance 1_24 a maximum 

deformation of 160 µm can be observed, which is reached after 190 mins. Based on linear 

thermal expansion, a maximum deformation of 60 µm is expected in contrast. At the same 

point of time a maximum deformation of 134 µm can be observed for distance 1_13, whereby 

a calculated deformation of 72 µm is expected. The mean temperature of the two closest 

sensors is considered in each case. It is striking that deviations between the measured and 

expected data are higher for distance 1_24 than for 1_13, despite a smaller nominal distance 

and only slightly elevated mean temperatures. This indicates that linear thermal models not 

just clearly undercut the measured deviations in presented case, but also that anisotropic 

expansion behaviour of the workpiece is evident. 

4.2. LASER TRACKER MEASUREMENT STRATEGY AND RESULTS 

With the data showing dynamic changes especially when switching off the heat influx 

(see Fig. 5), higher temporal resolution measurements are desirable. With the automated 

measurement setup data acquisition is possible in a faster frequency, facilitating equally high 
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frequency time dependent dimensional evaluation. Besides, manual operator influences on 

the measurements can be circumvented. 

The graphs in Fig. 5 show the correlation between different measured dimensions on the 

workpiece and different temperature values. The gray line shows linear thermal expansion 

assuming 11.1 ppm/K CTE, a literature value for C45E.  

Relative position changes of the measurement points are depicted as the colored lines in 

Fig. 6 with an exaggeration factor of 1000. 

The colored dots show measurement values according to different temperature values. 

There are three different color scales signifying time and differentiating the respective 

temperature values. The dots colored according to color scale 1 show the temperature 

measured at the center of the turbine housing, building an analogy to compensation  

of thermoelastic workpiece deformation with a single temperature (see Fig. 2: Sensor 5). For 

color scale 2 the mean value over all presumably relevant sensors was used as temperature 

input; e.g. for the mid diameter value the vertically middle sensors were used (see Fig. 2: 

Sensor 4–6), for the lower vertical distance on the right-side sensors 9 and 6 were used etc. 

For color scale 3 the mean value over all installed temperature sensors is used.  

 

 

Fig. 5. Resulting data from the automated experiment. The graphs show the temperatures [y-axes] over  

the measured distances [x-axes]. The different color scales signify different temperature data sources. 1 – a single 

temperature sensor in the center of the workpiece; 2 – multiple temperature sensors close to the measurement positions; 

3 – mean temperature over all part sensors. The gray line (“Lin. TE”) shows linear thermal expansion) 
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Analyzing the resulting data, the following takeaways can be inferred: 

While thermal compensation is shown to generally improve measurement results,  

the experimental results clearly demonstrate issues with temperature compensation methods 

used for large scale metrology tasks. In inhomogeneous and/or transient thermal workpiece 

states thermoelastic deformation compensation based on a single temperature sensor as well 

as based on mean values over multiple temperature sensors is not sufficient, especially for 

larger features.  

For diameter and shoulder measurements close to the heated area, the linear thermal 

model follows real measurement data generally closer (3_5, 6_7, 3_7, 5_6). For 

measurements further away from heated areas a lag and resulting hysteresis between 

temperature increase and decrease and dimension change can be seen (0_2, 2_3, 1_5, 0_5). 

The “top vertical” measurements exhibit a decrease in measured distance in the beginning, 

which the authors cannot explain, yet. When using averages over multiple sensors, some  

of which are closer to heated areas than the measurement position itself, temperature increase 

before measured distance increase is expected as can be seen in the “top” measurements. 

Overall, for diameter measurements the measured distance increase is up to twice  

the expected diameter change due to linear thermal expansion (see Fig. 3 and Fig. 6).  

 

Fig. 6. SMR position change over time. The lines and text annotations show the measurements. The colored lines show 

the point positions over time with the relative change to the initial point measurement multiplied by a factor of 1000 
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5. CONCLUSIONS AND OUTLOOK 

The article presents an experimental setup to quantify transient thermoelastic effects for 

a large workpiece in a non-climatized environment. It consists of an exemplary turbine 

housing workpiece, electric and digitally controlled heat pads allowing simulated turning 

process heat input, temperature sensors, and 3D measurement systems. Two experiments 

were conducted: First a manual experiment with a mCMM and a second fully automated 

experiment using a laser tracker, to allow for higher temporal resolution measurements. 

Both experiments showed thermoelastic deformation of up to more than two times the 

deformation calculated with the assumption of homogeneous temperature and linear thermal 

expansion – 160 µm for mCMM measurements with 190 minutes of heating and 490 µm for 

laser tracker measurements with 400 minutes of heating. Besides, it could be indicated that 

local heat fluxes result in significant transient temperature inhomogeneities over the work-

piece surface as well as wall-cross sections accompanied by non-negligible temperature 

equalization times. Additionally, a significant anisotropic expansion behavior considering 

different measurement positions over the workpiece could be observed. 

To compensate thermoelastic deformation more accurately, a higher fidelity thermo-

elastic model in FEM is advised. A digital twin of the setup using Ansys Software was already 

implemented. Due to lack of accuracy for the first prototype and scope restrictions, the authors 

forego a detailed presentation on results it this paper. It should be mentioned though that  

a high error sensitivity on assumed boundary condition parameters (e.g. heat flux, CTE, heat 

transfer coefficients) could be observed, making an a priori estimation based application  

of FEM unsatisfactory from a cost-benefit consideration as already discussed in Chapter 2. 

Nevertheless, future work will focus on further exploitation of the test rig in terms  

of laser tracker measurement series, which allow flexible and automized remote 

measurements over extended periods and more measurement points. Moreover, 

thermographic measurements are planned to increase resolution of thermal surface 

monitoring.  

For better predictability, building a digital twin in FEM with subsequent model 

optimization will be next object of investigation. For instance, a feedback loop of real 

measurements, e.g. ambient temperatures and flow conditions to determine heat transfers, 

using CFX, is planned. Besides, parametric simulations with varying simulated boundary 

settings will be investigated aiming to find the necessary parameters to empirically match 

simulation results with real measurements.  

Inverse modelling methods can be expedient to determine the introduced, unknown heat 

flux, which is currently estimated based on technical specifications and a priori assumptions. 

The authors conducted research in that regard using physics guided neural networks (PGNNs) 

to efficiently solve inverse heat transfer problems for simple geometries and will continue to 

do so for presented turbine housing [23] Subsequently, in a consistent approach at shopfloor 

measurements or on-machine measurements, the necessity for holistic compensation of not 

just machine errors but also workpiece deformation is evident. Therefore, a holistic 

consideration and error model fusion is mandatory as already advised by the authors  

in [5, 24].  
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