PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the theory of λ-matrices based MIMO control system design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we have described a new design algorithm for the whole set of latent-structure assignments via the approaches of block structure of λ-matrices placement. The procedure that has been developed is based on decoupling of the interactions between control loops in a multivariable plant. The procedure is performed using matrix polynomial solvent reconstruction for the decoupling purposes. However, for the design of the trajectory tracking controller, each input-output pair is treated respectively by designing SISO controllers. A second procedure is the MIMO PID compensator design via the model-matching method. This latter algorithm has been developed in order to avoid the internal or the hidden instability, which may occur in the first method, due to the block zeros - block poles cancellation.
Rocznik
Strony
421--442
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Signal and System Laboratory, Electronics and Electrotechnics Institute University of Boumerdes, Algeria, IGEE Ex:(INELEC)
autor
  • Signal and System Laboratory, Electronics and Electrotechnics Institute University of Boumerdes, Algeria, IGEE Ex:(INELEC)
autor
  • Science and Technology Department, University of Ziane Achour Moudjbara Street, BP 3117, Djelfa, Algeria
autor
  • Signal and System Laboratory, Electronics and Electrotechnics Institute University of Boumerdes, Algeria, IGEE Ex:(INELEC)
Bibliografia
  • 1. Ahn, S. M. (1982) Stability of a Matrix Polynomial in Discrete Systems. IEEE Trans. on Auto. Contr., AC-27, 1122–1124, Oct.
  • 2. Andry, A.N., Shapiro, E.Y., Chung, J.C. (1983) Eigenstructure assignment for linear systems. IEEE Trans. Aerosp. Electron. Syst. 19 (5) 711–729.
  • 3. Barnett, S. (1971) Matrices in Control Theory. Van Nostrand Reinhold, New York.
  • 4. Bekhiti, B., Dahimene, A., Nail, B., Hariche, K. and Hamadouche, A. (2015) On the Block Roots of Matrix Polynomialsbased MIMO Control System Design. In: 4th International Conference on Electrical Engineering ICEE Boumerdes. IEEE 978–1–4673–6673–1/15/ $ 31.00, 1–6.
  • 5. Bekhiti, B., Dahimene, A., Nail, B. and Hariche, K. (2016) The Left and Right Block Placement Comparison Study: Application to Flight Dynamics. Informatics Engineering, an International Journal (IEIJ), 4 (1), March.
  • 6. Chen, C.T. (1984) Linear System Theory and Design. Holt, Reinhart and Winston.
  • 7. Dahimene, A. (2009) Incomplete matrix partial fraction expansion. Control and Cybernetics 38, 3.
  • 8. Denman, E.D. (1977) Matrix polynomials, roots, and spectral factors. Applied Math. Comput. 3: 359–368.
  • 9. Denman, E.D. and Beavers, A.N. (1976) The matrix sign function and computations in systems. Appl.Math. Comput. 2: 63–94.
  • 10. Dennis, J.E., Traub, J.F. and Weber, R.P. (1976) The algebraic theory of matrix polynomials. J. Numer. Anal. 13: 831–845.
  • 11. Dennis, J.E., Traub, J.F. and Weber, R.P. (1978) Algorithms for solvents of matrix polynomials. J. Numer. Anal. 15: 523–533.
  • 12. DiStefano, J.J., Stubberud, A.R., and Williams, I.J. (1967) Theory and Problems of Feedback and Control Systems. Mc Graw Hill.
  • 13. Fredriksson, J., Egardt, B. (2001) Backstepping control with local LQ performance applied to a turbocharged diesel engine. In: Proc. 40th IEEE Conference on Decision and Control, 1, 111–116, IEEE.
  • 14. Friedrich, I., Liu, C.S., Oehlerking, D. (2009) Coordinated EGR-rate model-based controls of turbocharged diesel engines via an intake throttle and an EGR valve. In: IEEE Conference on Vehicle Power and Propulsion, VPPC 09, 7-10 Sept. 2009, 340–347. IEEE.
  • 15. Gohberg, I.,Kaashoek M.A., and Rodman, L. (1978) Spectral analysis of operator polynomial and a generalized Vandermondee matrix. 1. The finite-dimensional case. In: Topics in Functional Analysis. Advances in mathematics, Supplementary Studies, 3. Academic Press, London, 91– 128.
  • 16. Gohberg, I., Lancaster, P. and Rodman, L. (1982) Matrix Polynomials. Academic Press. Haiyan, W. (2006) Control oriented dynamic modeling of a turbocharged diesel engine. In: Sixth Int. Conference on Intelligent Systems Design and Applications ISDA 06, 2, 16-18 Oct. 2006, 142–145, IEEE.
  • 17. Hariche, K. (1986) Interpolation Theory in the Structural Analysis of λmatrices. Chapter 3, Ph. D. Dissertation, University of Houston.
  • 18. Hariche, K., Denman, E. D. (1988) On Solvents and Lagrange Interpolating λ-Matrices. Applied Mathematics and Computation 25, 321–332.
  • 19. Hariche, K., Denman, E. D. (1989) Interpolation Theory and λ-Matrices. Journal of Mathematical Analysis and Applications 143, 53.
  • 20. Harvey, C.A., Stein, G. (1978) Quadratic weights for asymptotic regulator properties. IEEE Trans. Autom. Control 23 (3), 378–387.
  • 21. Hippe, P., O’Reilly, J. (1987) Parametric compensator design. Int. J. Control 45 (4), 1455–1468.
  • 22. Jung, M., Glover, K., Christen, U. (2005) Comparison of uncertainty parameterizations for robust control of turbocharged diesel engines. Control Eng. Pract. 13(1), 15–25.
  • 23. Kailath, T., Li, W. (1980) Linear Systems. Prentice Hall.
  • 24. Kucera, V. (1979) Discrete Linear Control: The Polynomial Equation Approach. John Wiley.
  • 25. Liu, G.P., Patton, R.J. (1998) Eigenstructure Assignment for Control System Theory. John Wiley & Sons.
  • 26. Magdi, S. Mahmoud and Yuanqing Xia (2012) Applied Control Systems Design. Springer Verlag, London Limited.
  • 27. Moore, B.C. (1976) On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment. IEEE Trans. Autom. Control 21 (5) 689–692.
  • 28. Pereira, E. (2003) On solvents of matrix polynomials. Appl. Numer. Math., 47, 197–208.
  • 29. Pereira, E. (2003) Block eigenvalues and solution of differential matrix equation, Mathematical Notes, Miskolc, 4, 1, 45–51.
  • 30. Resende, P., Kaskurewicz, E. (1989) A Sufficient Condition for the Stability of Matrix Polynomials. IEEE Trans. on. Autom. Contr., AC-34, 539–541, May.
  • 31. Singh, M.G. and Elloy, J.-P. (1980) Applied Industrial Control. Volume 1. Pergamon Press.
  • 32. Shieh, L.S., Sacheti, S. (1978) A Matrix in the Block Schwarz Form and the Stability of Matrix Polynomials. Int. J. Control, 27, 245–259.
  • 33. Shieh, L.S. and Chahin, N. (1981) A computer-aided method for the factorization of matrix polynomials. Internat. Systems Sci. 12: 1303-1316.
  • 34. Shieh, L.S., Tsay, Y. T. and Coleman, N. I. (1981) Algorithms for solvents and spectral factors of matrix polynomials. Internat. J. Control 12: 1303–1316.
  • 35. Shieh, L.S. and Tsay, Y. T. (1981) Transformation of solvent and spectral factors of matrix polynomial, and their applications. Internat. J. Control 34: 813–823.
  • 36. Tsai, J.S.H., Shieh, I.S., and Shen, T.T.C. (1988) Block power method for computing solvents and spectral factors of matrix polynomials. Internat. Computers and Math. Appl. 16: 683–699.
  • 37. Shieh, L.S. and Tsay, Y.T. (1982) Block modal matrices and their applications to multivariable control systems. IEE Proc. D Control Theory Appl. 2: 41–48.
  • 38. Shieh, L.S., Chang, F.R. and McInnis, B.C. (1986) The Block partial fraction expansion of a matrix fraction description with repeated Block poles. IEEE Trans. Automat. Control. 31: 23–36.
  • 39. Shieh, L.S. and Tsay, Y.T. (1984) Algebraic-geometric approach for the modal reduction of large-scalemultivariable systems. IEE Proc. D Control Theory Appl, 131(1): 23–26.
  • 40. Shieh, L.S. and Tsay, Y.T. (1982) Transformation of a class of multivariable control systems to Block companion forms. IEEE Trans. Automat. Control 27: 199–203.
  • 41. Shieh, L.S., Tsay, Y.T. and Yates, R.E. (1983) State-feedback decomposition of multivariable systems via Block pole placement. IEEE Trans. Autom. Control 28(8), 850–852.
  • 42. Solak, M.K. (1987) Divisors of Polynomial Matrices: Theory and Applications. IEEE Trans. on Auto. Contr., AC-32, 916–919, Oct.
  • 43. Tsai, J.S.H. and Chen, C.M. and Shieh, L.S. (1992) A Computer-Aided Method for Solvents and Spectral Factors of Matrix Polynomials. Applied mathematics and computation, 47: 211–235.
  • 44. Yaici, M. and Hariche, K. (2014a) On eigenstructure assignment using Block poles placement. European Journal of Control, September, 20 (5), 217–226.
  • 45. Yaici, M., Hariche, K. (2014b) On Solvents of Matrix Polynomials. International Journal of Modeling and Optimization, 4, 4, August, 273–277.
  • 46. Yaici, M. Hariche, K. and Clark, T. (2014) A Contribution to the Polynomial Eigen Problem. International Journal of Mathematics, Computational, Natural and Physical Engineering, 8, 10.
  • 47. Wang, Q.G. (2003) Decoupling Control. Springer Verlag, Berlin–Heidelberg.
  • 48. Wonham, W.M. (1976) On pole assignment in multi-input controllable linear systems. IEEE Trans. Autom. Control 12, 660–665.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24cfdc21-13c1-4247-8199-7979c921f52b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.