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Abstract: In this paper we have described a new design al-
gorithm for the whole set of latent-structure assignments via the
approaches of block structure of λ-matrices placement. The proce-
dure that has been developed is based on decoupling of the inter-
actions between control loops in a multivariable plant. The proce-
dure is performed using matrix polynomial solvent reconstruction for
the decoupling purposes. However, for the design of the trajectory
tracking controller, each input-output pair is treated respectively by
designing SISO controllers. A second procedure is the MIMO PID
compensator design via the model-matching method. This latter
algorithm has been developed in order to avoid the internal or the
hidden instability, which may occur in the first method, due to the
block zeros - block poles cancellation.
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1. Introduction

A large-scale MIMO linear system, described by a state space equation, is of-
ten decomposed into smaller subsystems that can be more easily analyzed and
designed. The dynamic properties of the MIMO system depend on the block-
poles of its characteristic matrix polynomial. These block poles are nothing
more than the solvents of the closed-loop denominator matrix polynomial of
the considered MIMO system, see Yaici, Hariche (2014a,b), Dahimene (2009),
Shieh, Tsang and Yates (1983), and Bekhiti et al. (2015). The solvents play
an important role in the spectral decomposition of the respective matrices. The
relationship between the solvents and the latent roots of the matrix polyno-
mial will be briefly presented and explained here. For further information, see
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Shieh, Tsang and Coleman (1981), Dennis, Traub and Weber (1978), and Go-
hberg, Lancaster and Rodman (1982). One of the most important features of
a multivariable system is the possible cross-coupling or interactions between its
variables, i.e., one input variable may affect all the output variables. These
interrelations make it impossible for the control engineer to design each loop in-
dependently. In this case, adjusting controller parameters of one loop affects the
performance of another, Wang (2003). The decoupling problem can be stated
and solved on the basis of the frequency-domain representation of state feed-
back control, Kucera (1979). Therefore, in this work, the decoupling problem is
only considered in the frequency domain. By using the relations connecting the
parametric approach in the time and in the frequency domains, Chen (1984),
the equivalent time-domain results can also be derived.

Unfortunately, the proposed decoupling controller does not assure robust
tracking in the presence of modeling errors. Hence, in order to partially avoid
this problem, a new model-matching controller is stated and elaborated. In the
model-matching problem, a controller is designed to generate an input to the
system, so that the output tracks exactly the output of a given reference model.
In this work, we are looking for the new MIMO control algorithms. The paper is
organized as follow: the present first section is an introduction to the study here
considered. Then, the second section will include theoretical preliminaries and a
brief review on matrix polynomials. It is followed with the section, which deals
with the decoupling controller based on the block structure assignment. In the
fourth section we investigate the elaboration of the model-matching controller.

2. Survey on matrix polynomials and state space descrip-

tion

The preliminary theory, concerning matrix polynomials, considered here, can be
found in Yaici and Hariche (2014a,b), Dennis, Traub and Weber (1976, 1978),
Gohberg, Kaashoek and Rodman (1978), and Gohberg, Lancaster and Rodman
(1982). At this juncture, we are going to present formal theorems and definitions
of the characteristic λ-matrices and the canonical MFDs for MIMO systems,
which are the counterparts of the characteristic polynomials and the transfer
functions for SISO systems, respectively, see Hippe and O’Reilly (1987).

2.1. Matrix polynomials and solvents

In this subsection, we attempt to present some of the important results obtained
in the theory of matrix polynomials.

Definition 1 Given the set of m×m complex matrices A0, A1, ..., Al, the fol-
lowing matrix valued function of the complex variable λ is called a matrix poly-
nomial of degree l and order m:

A(λ) = A0λ
l +A1λ

l−1 + ...+Al−1λ+Al. (1)
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Definition 2 The complex number λi is called a latent root of the matrix poly-
nomial A(λ) if it is a solution of the scalar polynomial equation det(A(λ)) = 0.
The nontrivial vector p, solution of A(λi)p = 0m, is called a primary right la-
tent vector associated with λi. Similarly, the nontrivial vector q, solution of
qTA(λi) = 0m, is called a primary left latent vector associated with the latent
value λi.

Theorem 1 (Gohberg, Lancaster and Rodman, 1982) The number of latent
roots of the regular matrix polynomial A(λ) in the domain D enclosed by a
contour Γ is given by:

n =
1

2πj

∮

Γ

trace

[

A−1(λ)
dA(λ)

dλ

]

dλ

each latent root being counted according to its multiplicity.

Definition 3 A right block root, also called a solvent of λ-matrixA(λ), is an
m×m real matrix R such that:

A0R
l+A1R

l−1+ ...+Al−1R+Al = Om ⇔ AR(R) =

l
∑

i=0

AiR
l−i = Om, (2)

while a left solvent is an m×m real matrix L such that:

LlA0 +Ll−1A1 + ...+LAl−1 +Al = Om ⇔ AL(L) =
l

∑

i=0

Ll−iAi = Om. (3)

Theorem 2 (Shieh ans Tsay, 1981) If A(λ) has n linearly independent right la-
tent vectors (p1, ..., pn) (or left latent vectors (q1, q2, ..., qn)) corresponding to la-
tent roots (λ1, λ2, ..., λn), then PΛP−1 (QΛQ−1) is a right (left) solvent, where:
P = [p1, p2, ..., pn], (Q = [q1, q2, ..., qn]

T ) and Λ = diag(λ1, λ2, λn).

Proof See Shieh and Tsay (1981).

Theorem 3 (Gohberh, Lancaster and Rodman, 1982) Let Γ be a contour that

contains m latent roots and let the m × m matrix M =
1

2πj

∮

Γ

A−1(λ)dλ be

nonsingular, then we have as right and left solvents, respectively:

R =
1

2πj

∮

Γ

λA−1(λ)dλ.M−1 L = M−1.
1

2πj

∮

Γ

λA−1(λ)dλ

and we see that M is a similarity transformation between R and L.
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2.2. Characteristic λ-matrices of MIMO systems

Consider a linear time-invariant system, described by a state equation in general
coordinates:

{

Ẋ(t) = AX(t) + Bu(t)
Y (t) = CX(t) +Du(t)

(4)

where: X ∈ Rn, Y ∈ Rp, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.

The system (4) is block controllable of index l if the matrix

i. Φ = [B,AB,A2B, ..., Al−1B] has full rank

ii. l =
n

m
is an integer.

Theorem 4 (Shieh, Chang and McInnis, 1986) The multivariable control sys-
tem described in (4) can be transformed into a block controller form if two con-
ditions are satisfied:

i. l =
n

m
is an integer.

ii. The system is block controllable of index l.

If both conditions are satisfied, then the change of coordinates Xc(t) = TcX(t)
transforms the system into the following block controller form

{

Ẋc(t) = AcXc(t) +Bcu(t)
Y (t) = CcXc(t) +Dcu(t)

(5)











































































































Tc =











Tc1

Tc1A
...

Tc1A
l−1











Tc1 = [Om, ..., Im] Φ−1

Ac = TcATc
−1 =















Om Im · · · Om

Om Om · · · Om

...
... . . . Om

Om Om . . . Im
−Al −Al−1 · · · −A1















Bc = TcB =
(

Om Om · · · Im
)T

Cc = CTc
−1 =

(

Cl Cl−1 · · · C1

)

with: Xc ∈ Rn, Ai ∈ Rm×m, Ci ∈ Rp×m, i = 1, ..., l, Im and Om being m ×m

identity and null matrices, respectively, and the superscript T denoting the
transpose. For proof, see Shieh, Chang and McInnis (1986).
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The characteristic polynomial in a SISO system is directly obtained from the
nonzero elements in the last row of the system matrix, when transformed into
the controllable canonical form, and the characteristic polynomial is a scalar
polynomial. For multivariable control systems, the characteristic polynomial
is a matrix polynomial. The right matrix fraction description (RMFD) of the
system can be formulated directly from (5) as:

H(λ) = NR(λ)DR
−1(λ) (6)

where the matrix DR(λ) is the right denominator, given by

DR(λ) = A0λ
l +A1λ

l−1 + ...+Al−1λ+Al (7)

and the right numerator NR(λ) is given by

NR(λ) = C1λ
l−1 + C2λ

l−2 + ...+ Cl−1λ+ Cl. (8)

Note that the matrix coefficients of DR(λ) and NR(λ) can be directly obtained
from those nontrivial block entries of the block controllable canonical form in
(5). DR(λ) is referred to as the right characteristic λ-matrix of the system (4).
In fact, DR(λ) can be directly determined as

DR
−1(λ) = (El

1)
T
(λIn −Ac)

−1 = (El
1)Tc(λIn −A)−1B (9)

where (El
1)

T
=

[

Im Om · · · Om

]

∈ Rm×m.

Upon examining Tc, we have the following new result:

Tc = P (Ac, Bc)P
−1(A,B) (10)

P (A,B) =
[

B,AB, ..., Al−1B
]

(11)

P (Ac, Bc) =
[

Bc, AcBc, ..., Ac
l−1B

]

. (12)

Substituting (10) into (9) yields the right characteristic λ-matrix of the system
in (4),

DR
−1(λ) = (El

1)
T
P−1(A,B)(λIn −A)−1B. (13)

Basing on the definition of the characteristic λ-matrix, we can introduce the
block poles of an MFD from the solvents of a λ-matrix.

2.3. Block spectral decomposition:

Assume we are given an lth degree mth order monic λ-matrix DR(λ)

DRL(X) = X lA0 +X l−1A1 + ...+XAl−1 +Al (14)
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where X ∈ Cm×m. If there is an Li ∈ Cm×m such that DRL(Li) = Om, then
Li is referred to as a left solvent of DR(λ) . If there exists a set of left solvents
{Li, i = 1, ..., l} such that

l
⋃

i=1

σ(Li) = σ(DR(λ)) (15)

then DR(λ) has a complete set of left solvents (Shieh and Tsay, 1981). When
DR(λ) has a complete set of left solvents, the RMFD of (4) has a block partial
fraction expansion.

Lemma 1 (Shieh and Tsay, 1982) Let {Li, i = 1, ..., l} be a complete set of left
solvents of DR(λ), then

H(λ) = NR(λ)DR
−1(λ) =

l
∑

i=1

Hi(λIm − Li)
−1 (16)

with Hi =
l

∑

i=1

CjZiL
l−j
i , i = 1, ..., l, (17)

where: Zi ∈ Cm×m, i = 1, ..., l can be determined from the following matrix
equation:

[Z1, Z2, ..., Zl] = [Om, Om, ..., Im]V −B(L1, L2, ..., Ll),

and V −B(L1, L2, ..., Ll) is the inverse of the block transpose of the left block
Vandermonde matrix and is defined in Yaici and Hariche (2014a).

Lemma 1 indicates that the system of (4) is decomposed into l parallel sub-
systems, whose RMFD can be expressed as Hi(λIm − Li)

−1. The solvents
{Li, i = 1, ..., l} in (17) are called the right block poles of the RMFD in (16) and
Hi are the associated block residues of the block partial fraction of the RMFD.
If an open-loop system does not have a complete set of right block poles, then
it cannot be decomposed into (16).

The state matrix described in (4) can be transformed into a block diagonal
canonical form using the so called right block Vandermonde matrix as follows:

Ac = VRΛVR
−1 (18)

where
VR : is the right block Vandermonde matrix
Λ : is the block diagonal form matrix

VR =







Xc1
T

...

Xcl
T







T

, VR
−1 =







Yc1

...
Ycl






,
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Λ =







R1 . . . Om

...
. . .

...
Om . . . Rl






, Xci =











Im
Ri

...

Ri
l−1











.

If (18) is expanded, then the block spectral decomposition of the matrix Ac can
be written as:

Ac =

l
∑

i=1

XciRiYci (19)

Eq (19) ⇔ A =

l
∑

i=1

(Tc
−1Xci)Ri(YciTc) =

l
∑

i=1

XiRiYi (20)

where
Xi = Tc

−1Xci : is the right block vector corresponding to Ri

Yi = YciTc : is the left block vector corresponding to Ri .

Equation (18) leads to the following matrix eigenstructure

Eq(18) ⇔ AXi = XiRi for i = 1, ..., l (21)

where Ri is called a right block eigenvalue of the matrix A, and Xi, of full rank,
is the corresponding right block eigenvector of the matrix A. Further, Yi, of full
rank, is the corresponding left block eigenvector of the matrix A.

Properties of projectors:

The matrices Pi = XiYi are called projectors and satisfy the following proper-
ties:

1.
l
∑

i=1

Pi =
l
∑

i=1

XiYi = In 2. YjXi =

{

Om i 6= j

Im i = j

3. Pi = XiYi and Pi
2 = Pi 4. PiPj = Om iff i 6= j.

2.4. Block partial fraction expansion and response

Multi-input, multi-output systems generally lead to matrix fraction descriptions
(MFD) of rational matrices and/or block partial fraction expansions, expressed
in terms of projectors contribution that we consider now:

Eq. (20) ⇔ (λIn −A)−1 =

l
∑

i=1

Xi(λIm −Ri)
−1Yi (22)

Eq. (20) ⇔ eAt =

l
∑

i=1

Xie
RitYi. (23)
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Remark 1 The pair (Xi, Ri) is called right block root block vector pair or, in
other words, we call it block structure, which characterizes completely the sys-
tem and alters both stability and the shape of the response. A transfer-function
matrix of a linear time-invariant multivariable system can be formulated in
terms of block structure as follows:

H(λ) = NR(λ)DR(λ)
−1

= C(λIn −A)−1B ⇒ Y (λ) = C(λIn −A)−1Bu(λ)

Y (λ) =

(

l
∑

i=1

CXi(λIm −Ri)−1YiB

)

u(λ). (24)

Note that this decoupled structure is in the canonical block diagonal form, and
is schematically illustrated in Fig. 1:

X 1(sI m − R 1)
− 1Y1

X l (sI m − R l )
− 1Yl

B

u(λ )
�

C

Y (λ )

Figure 1. The MIMO solvent decoupling structure

Latent structure assignment, which is the (block-roots, block-vectors) place-
ment, provides for large degree of freedom in the design of feedback gain matrix,
because the latent structure is more general and alters both the stability and
the transient responses.

2.5. Latent structure from the eigenstructure

Assume that Vi is an eigenvector of A, corresponding to λi; the corresponding
latent vector is obtained directly using the following similarity transformation
(see Yaici and Hariche, 2014b; and Yaici, Hariche and Clark, 2014):

AVi = λiVi ⇔ νi = Tc1Vi. (25)

Let an ith set (i = 1...l) ofm linearly independent latent vectors be {νi1, ..., νim}
and its corresponding latent values {λi1, ..., λim}. Then we can determine a right
block root using the following equation:

Ri = [νi1, ..., νim]diag([λi1, ..., λim])[νi1, ..., νim]−1. (26)

3. Parametric block roots assignment

3.1. Objectives

In order to place spectral factors, we can use directly a block structure assign-
ment procedure, which will decouple the system via the assignment of latent
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structure of the numerator at the denominator and set the indefectible roots to
zeros.

Let us define the RMFD transfer function H(λ) = N(λ)D(λ)
−1

with:

D(λ) = (Dlλ
l + ...+D1λ+D0) and Dl = Im

N(λ) = (Nkλ
k + ...+N1λ+N0).

The desired characteristic matrix polynomial is of the form:

Dd(λ) = (Ddlλ
l + ...+Dd1λ+Dd0). (27)

If we know that the desired solvents (Ri with i = 1, ...l) are block roots with
respect to the desired matrix polynomial, then:

Dd(Ri) = Om ⇔ Dd0 +Dd1Ri + ...+DdlRi
l = Om

⇔ [Dd0, Dd1, ..., Dd(l−1)]Xci +Ri
l = Om

⇔ [Dd0, Dd1, ..., Dd(l−1)]TcXi = −Ri
l.

Hence, in order to obtain the desired block roots relocation, we employ the
matrix shift property: Ddi = Di −Kci, and we get:

Dd(Ri) = Om ⇔ [D0, ..., Dl−1]TcXi − [Kc0, ...,Kc(l−1)]TcXi = −Ri
l,

or, in a more compact form,

Dd(Ri) = Om ⇔ [D0, ..., Dl−1]TcXi +Ri
l = KcTcXi = KXi

Dd(Ri) = Om ⇔ D(Ri) = KXi for i = 1, 2, ..., l.

The feedback gain matrix is easily obtained from the block structure data by
the newt formula:

K = [D(R1), ..., D(Rl)][X1, ..., Xl]
−1. (28)

3.2. Construction of the decoupling block roots

In the present section we have introduced an alternative method for constructing
the linear state-feedback control law from the desired block structure (Ri, Xi)
using some algebraic approaches and λ-matrix theory. This approach is the
counterpart of eigenstructure assignment for MIMO system design, which has
been discussed by many authors. But a natural question to be asked here at
this stage is the following: what are the desired block roots that will perfectly
decouple the system? In order to answer this question we propose an extension
of the scalar poles-zeros cancellation method to the more general case (block
poles-block zeros cancellation method).

First, we should determine the block zeros of the corresponding numerator
matrix polynomial N(λ), and then we will force them to be the block roots of
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the denominator via the state feedback gain matrix. Without prior knowledge
of the eigenvalues and eigenvectors of the matrix, the Newton-Raphson method
(Shieh, Tsay and Coleman, 1981) has been successfully utilized for finding the
solvents. Also, the block-power method has been developed by Tsai, Shieh and
Shen (1988) for finding the solvents and spectral factors of a general nonsingular
polynomial matrix. Moreover, there are quite a few numerical methods for
computing the block roots of matrix polynomials without any prior knowledge
of the eigenvalues and eigenvectors of the matrix polynomial. In this paper we
will use one of the very well-known methods for constructing the complete set
of solvents.

Let now Z1, · · · , Zk ∈ Rm×m be the block zeros of N(λ), then the desired
block poles are given directly by: Ri = Zi, Rj = Om. Knowing that Ri and
Rj for i = 1, · · · , k, and j = k + 1, · · · , l are the block roots of Dd(λ) means
that [Dd0, · · · , Dd(l−1)]VZ = −[Z l

1, · · · , Z
l
k, Om×m(l−k)], where

VZ =











Im · · · Im
Z1 · · · Zk

... · · ·
...

Z l−1
1 · · · Z l−1

k

Om · · · Om

Om · · · Om

... · · ·
...

Om · · · Om











.

Some algebraic manipulations yield

K =
(

[D0, · · · , Dl−1]VZ + [Z l
1, · · · , Z

l
k, Om×m(l−k)]

)

(T−1
c VZ)

−1
.

The procedure:

• Assume that all states are available and measurable.
• Check the Block Observability and Block Controllability of a given state
space model of the square dynamic system.

• Construct the right numerator and right denominator matrix polynomials.
• Find a complete set of block roots for the numerator matrix polynomial.
• Choose the k solvents of the numerator as block roots to denominator and
force the remaining ones to zeros.

• Design the state feedback gain matrix which will assign the whole set of
block structure. Here, at this point, we are ready to design the SISO
tracking regulators for each of the input-output pairs, because the system
is perfectly decoupled.

Example 1 A basic element in power generation is the turbogenerator, the dy-
namic model of which has six states, two inputs and two outputs (n = 6,m =
2 and p = 2) see Fredriksson and Egardt (2001), Friedrich, Liu and Oehlerk-
ing (2009), Haiyan (2006), and Jung, Glover and Christen (2005). Using the
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appropriate data, see Magdi and Xia (2012), the system matrices are given by:

A =

















50.9686 183.4988 185.0527 377.4427 397.5263 −895.7863
49.3505 174.8767 181.8536 362.9740 383.8789 −863.0960
22.3703 78.4855 67.7505 154.7968 158.4009 −365.6538
16.3520 61.2286 53.8233 118.8125 125.0745 −284.0468
27.5073 100.9073 112.8257 213.2357 228.3972 −507.7180
37.3706 135.7728 137.5260 278.2199 294.2728 −661.8056

















,

B =

















6.9516 8.5300
4.9912 8.7393
5.3580 2.7029
4.4518 2.0846
1.2393 5.6498
4.9036 6.4031

















C =

(

1.5201 −8.4744 8.8746 9.4849 22.1231 −15.6123
2.1220 −7.8463 10.3791 11.5325 24.5930 −21.0454

)

,

D =

(

0.0000 0.0000
0.0000 0.0000

)

.

Finding the decoupling gain matrix via block structure assignment for a turbo

generator system rank(M) = rank([B,AB, ..., A2B]) = 6 and
n

m
= 3 ⇒

block controllable system. The block controllability transformation is given by:

Tc =

















0.1370 0.0088 −0.0708 0.2064 0.1293 −0.3459
0.1169 −0.2028 −0.1018 −0.2104 −0.1754 0.3874
−0.1619 −0.1583 0.2815 −0.2001 0.1801 0.2192
−0.1193 −0.0017 0.0049 0.1065 0.0884 0.0464
0.1052 0.3790 0.0126 0.6104 0.0594 −0.9139
−0.1440 −0.0497 0.0474 −0.4465 −0.1065 0.6352

















.

Then, the numerator and denominator matrices are:

D(λ) = D3λ
3 +D2λ

2 +D1λ+D0

N(λ) = N3λ
3 +N2λ

2 +N1λ+N0,

such that:

D3 =

(

1 0
0 1

)

, D2 =

(

4.5688 3.7077
−8.2327 16.4313

)

D1 =

(

−6.1967 24.4111
−59.0804 75.6239

)

, D0 =

(

−32.7837 39.7278
−104.1149 104.2085

)

N3 =

(

0 0
0 0

)

, N2 =

(

8.9054 7.6895
9.8203 5.8135

)
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N1 =

(

58.1433 28.5030
63.8164 21.9189

)

, N0 =

(

93.1159 14.9399
100.0705 9.9390

)

.

By applying the generalized Newton method or block power method we can find
the solvents of N(λ):

N(RNi) = O2 ⇒ RN1 =
(

−2.1727 0.1564
−1.2948 −0.8273

)

, RN2 =
(

−4.1727 −1.3671
0.1481 −2.8273

)

.

Using now our proposition we set the following:







R1 = RN1

R2 = RN2

R3 = O2

and Xi = Tc
−1





Im
Ri

Ri
2



 i = 1, 2, 3.

The block structure pairs (Ri, Xi) are given below:

R1 =
(

−2.1727 0.1564
−1.2948 −0.8273

)

, R2 =
(

−4.1727 −1.3671
0.1481 −2.8273

)

, R3 =
(

0 0
0 0

)

X1 =

















64.0353 8.6571
58.7618 2.4826
23.6798 4.7298
17.0027 0.2638
29.8439 0.3218
40.4194 2.8015

















, X2 =

















105.1777 132.3271
80.8622 111.9225
69.2170 69.9568
68.5704 44.5486
19.3865 46.5400
74.8234 84.9200

















, X3 =

















9.2638 8.4644
5.7850 2.1083
0.1608 5.5341
1.1992 6.3069
8.6177 0.3233
4.8291 6.1582

















.

The desired right evaluation of the original denominator is as follows:

W1 = R1
3 +D2R1

2 +D1R1 +D0 =
(

−25.0920 19.3012
−56.1029 44.3949

)

W2 = R2
3 +D2R2

2 +D1R2 +D0 =
(

1.0790 1.2084
0.3792 −0.2103

)

W3 = R3
3 +D2R3

2 +D1R3 +D0 =
(

−32.7837 39.7278
−104.1149 104.2085

)

.

The state feedback gain matrix is designed, following our method, as:

K = −[W1,W2,W3][X1, X2, X3]
−1

K =
(

0.9660 6.7688 5.9075 12.0559 12.3487 −28.4003
3.8210 16.4655 19.2893 34.4455 37.9502 −82.4143

)

F = N2
−1 =

(

−0.2449 0.3239
0.4136 −0.3751

)

Ad = (A−BK), Bd = BF, Cd = C.

Construction of the desired matrix polynomial coefficients from those block
spectral data, see Yaici and Haniche (2014b) and Bekhiti et al. (2016):

[Dd3, Dd2, Dd1, Dd0] = −[R3
1, R

3
2, R

3
3]





I I I

R1 R2 R3

R2
1 R2

2 R2
3





−1
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results in the following desired λ-matrix:

Dd(λ) = Dd3λ
2 +Dd2λ

2 +Dd1λ+Dd0.

Then, the closed loop transfer matrix is completely decoupled as follows:

Hclosed(λ) = C(λI −A+BK)−1BF = N(λ)Dd
−1(λ)F =







1

λ
0

0
1

λ






.

We obtain a trajectory tracking with a sufficiently small error when we use a
SISO PID regulator for each of the input-output pairs. The result for arbitrary
input signals is shown in the subsequent Figs. 2 and 3.

Figure 2. Trajectory tracking of the MIMO decoupled system



434 B. Bekhiti, A. Dahimene, B. Nail and K. Hariche

Figure 3. The error of the MIMO decoupled system

3.3. Internal dynamics and zero dynamics

The dynamics of the non-observable states are called the internal dynamics.
The stability of these dynamics is required for the development of the control
law. For a MIMO linear system, the internal dynamics are stable if the block
zeros of the matrix transfer function have latent roots lying in the left half-plane
of the complex plane. We introduce the notion of zero dynamics to study the
stability of the internal dynamics of a MIMO linear system. Unfortunately, if
at least one block zero of the numerator is unstable, then we have a hidden
instability, when we do a decoupling state feedback. We have to find how to
move or to relocate block zeros to the desired stable locations. But this can be
done only in systems with input-output matrix.
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4. Model matching based MIMO PID controller design

Objectives: our objective in this section is the design of multivariable PID
controller based matrix fraction description so as to achieve a set of performance
characteristics or matching a desired system with a given model. Via the help
of partial fraction expansion and minimal realization we will parameterize the
matrix coefficients of PID controller in terms of state space description. Both
tracking and regulation problems are treated in our work.

Figure 4. The matching MIMO PID controller

Design procedure:

• First, design the transfer matrix of the closed loop model to be achieved,
Hm(λ) with DC-gain(Hm) = Hm(0) = I.
Reaching some desired objectives means that the needed performance
characteristics are secured via the design (i.e. the system response charac-
teristics, robustness, stability performance, sensitivity regulation, tracking
with sufficiently small errors etc.).

• Second, reconstruct the forward transfer matrix Gm(λ)

Gm(λ) = Hm(λ)(I −Hm(λ))−1 =
1

(∆m(λ))
Nm(λ), (29)

where ∆(λ) is the common denominator or the characteristic polynomial.

• Third, make the MIMO model matching, where the PID controller matrix
transfer function is given by its right MFD formula as:

C(λ) = (KI +KPλ+KDλ2)(λI)−1. (30)

By performing model matching we arrive at:

G(λ)C(λ) = Gm(λ) ⇔

(

N(λ)(KI +KPλ+KDλ2)

(λ.∆(λ))

)

=

(

Nm(λ)

∆m(λ)

)

(KI +KPλ+KDλ2) =
(λ.∆(s))

(∆m(λ))
N−1(λ)Nm = F (λ). (31)

Remark 2 In the inversion of the matrix N−1(λ) we use the procedure pro-
posed by Yaici and Hariche (2014b):

KI =
(

F (λ) |λ=0

)

= lim
λ→0

F (λ) (32)
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KP =

(

dF (λ)

dλ
|λ=0

)

= lim
λ→0

dF (λ)

dλ
(33)

KD =

(

d2F (λ)

2dλ2
|λ=0

)

= lim
s→0

d2F (λ)

2dλ2
. (34)

Now, the subject matter we deal with in this part is the determination of a
linear time invariant dynamical equation that has a prescribed rational transfer
matrix F (λ). This dynamical equation is called a realization of F (λ), and is the
best one if it has the least possible dimension, sometimes it is called a minimal
or irreducible realization.

The study of irreducible or minimal realization is important for the following
reasons:
1. In order to apply techniques and computational algorithms developed for the
state space representation, the transfer function matrices must be realized as
dynamical equations.
2. It is always desirable to simulate the system on an analog or digital computer
to check its performance before the system is built.
3. The results can establish the link between the state-variable approach and
the transfer function approach.

Note: our objective here is to parameterise the MIMO PID coefficients in
terms of state space matrices of F (λ), therefore, at this stage, we can take
the minimal realization of F (λ) using the very well-known algorithms (that are
available in MATLAB): Fspace = minreal(ss(F ))

F (λ) =
(λ.∆(λ))

(∆m(λ))
N−1(λ)Nm = CF (λEF −AF )BF +DF

(31) ⇔ KI +KPλ+KDλ2 = CF (λEF −AF )BF +DF ,

where (using MATLAB command):

AF = Fspace.A

BF = Fspace.B

CF = Fspace.C

DF = Fspace.D

EF = Fspace.E.

A parametrical derivation of the matrix coefficients in terms of state space
matrices is easily obtained:

KI = −CFAF
−1BF +DF , (35)

KP = −CFEFAF
−2BF , (36)

KD = −CFEF
2AF

−3BF . (37)
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Example 2 Suppose we are given a square transfer matrix of a distillation
column system (Wang, 2003):

G(λ) =
N(λ)

∆

with:
N(λ) =

(

−6.7461 26.6440
59.4810 −54.9357

)

+
(

2.5806 5.9490
4.0872 2.6221

)

λ, ∆ = (λ2 + 4λ+ 5).

More precisely, in the matrix polynomial of rational coefficients form we can
write:

G(λ) =

















(

2.581λ− 6.746

λ2 + 4λ+ 5

) (

5.949λ+ 26.64

λ2 + 4λ+ 5

)

(

4.087λ+ 59.48

λ2 + 4λ+ 5

) (

2.622λ− 54.94

λ2 + 4λ+ 5

)

















.

The desired closed loop transfer matrix is given by:

Hm =

















(

16.62λ+ 580

λ2 + 45λ+ 580

) (

2.205λ

λ2 + 45λ+ 580

)

(

1.018λ

λ2 + 45λ+ 580

) (

17.3λ+ 580

λ2 + 45λ+ 580

)

















.

We now design a MIMO PID compensator C(λ) = (KI +KPλ+KDλ2)(λI)−1

which will force the original plant G(λ) to match the desired system Hm(λ).
First, we follow the preceding procedure and we compute the inverse of the

matrix polynomial using the algorithm proposed by Yaici and Hariche (2014b),
and we get:

Gm = Hm(λ)(I −Hm(λ))−1 =





11Gm(λ) 12Gm(λ)

21Gm(λ) 22Gm(λ)



 ,

with:

11Gm(λ) =
(

−16.62λ2 − 1043λ− 16070

λ3 + 56.08λ2 + 783.9λ

)

, 12Gm(λ) =
(

−2.205λ2 − 99.21λ− 1279

λ3 + 56.08λ2 + 783.9λ

)

21Gm(λ) =
(

−1.018λ2 − 45.79λ− 590.2

λ3 + 56.08λ2 + 783.9λ

)

, 22Gm(λ) =
(

−17.3λ2 − 1073λ− 16460

λ3 + 56.08λ2 + 783.9λ

)

F (λ) = λG−1(λ)Gm(λ) = λ
∆(λ)

(∆m(λ))
N−1(λ)Nm(λ).

With the help of the minimal realization and order reduction algorithms that
exist in MATLAB, we can use for example ”minreal” and ”ss” functions, and



438 B. Bekhiti, A. Dahimene, B. Nail and K. Hariche

we get:

KI = limλ→0 F (λ) = limλ→0

(

CF (λEF −AF )
−1

BF

)

= −CFAF
−1BF +DF

=
(

−4.7191 −2.6728
−5.0410 −0.9828

)

,

KP = limλ→0
dF (λ)

dλ
= − lim

λ→0

(

CFEF (λEF −AF )
−2

BF

)

= −CFEFAF
−2BF

=
(

−159.6226 566.7458
305.9696 −128.7950

)

,

KD = limλ→0
d2F (λ)

2dλ2
= lim

λ→0

(

CFEF
2 (λEF −AF )

−3
BF

)

= −CFEF
2AF

−3BF

=
(

−160.7530 573.2951
311.1655 −130.7223

)

.

The simulation results for the arbitrary input signals for MIMO PID controller
based on model-matching are shown in the subsequent Figs. 5 and 6.

Discussion: The case study considered illustrates best tracking, regulation
and robustness with no oscillations. It shows also the ability of the proposed
MIMO PID controller to robustly maintain the best dynamic performance, while
matching some desired latent structures and preserving the output feedback
compensator behavior. From the obtained results shown in the respective fig-
ures, we see that the plant outputs coincide with the reference, no excess is
recorded in both transient and permanent regimes, which is well illustrated by
the error signals, while both tracking and regulation objectives are verified by
the procedure. Finally, the global stability is guaranteed because the system
is designed to match a specific stable latent structure. Hence, the proposed
systematic procedure has a high degree of design freedom and/or much more
flexibility in synthesis.

5. Conclusion

As a concluding statement, we can say that, instead of placing only a set of
desired eigenvalues, we are able to assign both latent-vectors and the corre-
sponding latent-values. So, it is more efficient to assign the latent structure
via the approach of block pole placement using the state feedback gain matrix,
which is a static controller. For block roots of λ-matrices, a decoupling method
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Figure 5. The trajectory tracking control for the 1st and 2nd output

has been proposed to eliminate the interactions between the control loops in
MIMO systems. The simulation results show that a high performance is ob-
tained for both regulation and tracking problems with low order controllers.
However, there is the problem of internal dynamics due to the nature of the
proposed procedure (i.e. block zeros – block poles cancellation). A second al-
gorithm, based on the model-matching method, is presented and shown to be
efficient, this dynamic compensator of a special type being called MIMO PID
controller. It has a higher degree of freedom in design and avoids the internal
dynamics instability.
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