PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Assessment of GNSS PPP-based zenith tropospheric delay

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study assesses the precision of zenith tropospheric delay (ZTD) obtained through triple-constellation global navigation satellite system (GNSS) precise point positioning (PPP). Various ZTD estimates are obtained as by-products from GPS-only, GPS/Galileo, GPS/BeiDou, and triple-constellation GPS/Galileo/BeiDou PPP solutions. Triple-constellation GNSS observations from a number of globally distributed reference stations are processed over a period of seven days in order to investigate the daily performance of the ZTD estimates. The estimated ZTDs are then validated by comparing them with the International GNSS Service (IGS) tropospheric products and the University of New Brunswick (UNB3m) model counterparts. It is shown that the ZTD estimates agree with the IGS counterparts with a maximum standard deviation (STD) of 2.4 cm. It is also shown that the precision of estimated ZTD from the GPS/Galileo and GPS/Galileo/BeiDou PPP solutions is improved by about 4.5 and 14%, respectively, with respect to the GPS-only PPP solution. Moreover, it is found that the estimated ZTD agrees with the UNB3m model with a maximum STD of 3.1 cm. Furthermore, the GPS/Galileo and GPS/Galileo/BeiDou PPP enhance the precision of the ZTD estimates by about 6.5 and 10%, respectively, in comparison with the GPS-only PPP solution.
Rocznik
Strony
171--184
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Civil Engineering Department, Aswan University, Egypt
  • Civil Engineering Department, Ryerson University, Canada
Bibliografia
  • Afifi, A., El-Rabbany, A., Jin, S. (2016) Un-differenced precise point positioning model using triple GNSS constellations. Cogent Geoscience, 2: 1223899.
  • Ahmed, F., Václavovic, P., Teferle, F. N., Douša, J., Bingley, R., Laurichesse, D. (2016) Comparative analysis of real-time precise point positioning zenith total delay estimates. GPS Solutions, 20, 187-199.
  • Bahadur, B., Nohutcu, M. (2018) PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solutions, 22:113.
  • Bałdysz, Z., M. Szołucha, M., Nykiel, G., M. Figurski, M. (2017) Analysis of the Impact of Galileo Observations on the Tropospheric Delays Estimation. Baltic Geodetic Congress (BGC Geomatics), Gdansk, 2017, pp. 65-71.
  • BKG, Agency for Cartography and Geodesy, (2020) Available from https://igs.bkg.bund.de/ dataandproducts/rinexsearch. Accessed on July 1st, 2020.
  • Boehm, J., Niell, A., Tregoning, P., Schuh, H. (2006) Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33, 1-4.
  • Ding, N., Zhang, S., Wu, S., Wang, X., Kealy, A., Zhang, K. (2018) A new approach for GNSS tomography from a few GNSS stations. Atmospheric Measurement Techniques, 11, 3511-3522.
  • Ding, W., Teferle, F. N., Kazmierski, K., Laurichesse, D., Yuan, Y. (2017) An evaluation of real-time troposphere estimation based on GNSS Precise Point Positioning. Journal of Geophysical Research: Atmospheres, 122, 2779-2790.
  • Dousa, J., Bennitt, G. V. (2013) Estimation and evaluation of hourly updated global GPS Zenith Total Delays over ten months. GPS Solutions, 17, 453-464.
  • Dousa, J., Vaclavovic, P. (2014) Real-time zenith tropospheric delays in support of numerical weather prediction applications. Advances in Space Research, 53, 1347-1358.
  • Feng, P., Li, F., Yan, J., Barriot, J. P. (2019) Evaluation of the zenithal total delay estimates from BeiDou/GPS combined signals in the frame of the IGS MGEX project. Acta Geodaetica et Geophysica, 54, 71-87.
  • Hofmann-Wellenhof, B., Lichtenegger, H., Walse, E. (2008) GNSS Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More. Springer, New York.
  • Hu, P., Huang, G., Zhang, Q., Wang, X., Mao, M. (2018) Algorithm and Performance of Precipitable Water Vapor Retrieval Using Multiple GNSS Precise Point Positioning Technology. China Satellite Navigation Conference (CSNC) 2018 Proceedings. CSNC 2018. Lecture Notes in Electrical Engineering, 497, 139-151.
  • IGS, International GNSS Service, (2020) Available from ftp://cddis.gsfc.nasa.gov/. Accessed on July 1st, 2020.
  • IGS-MGEX, IGS Multi-GNSS Experiment, (2020) Available from ftp://cddis.gsfc.nasa.gov/gps/products/mgex. Accessed on July 1st, 2020.
  • Lagler, K., Schindelegger, M., Bohm, J., Krasna, H., Nilsson, T. (2013) GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys Res Lett, 40, 1069-1073.
  • Leandro, R. F., Langley, R. B., Santos, M. C. (2008) UNB3m_pack: a neutral atmosphere delay package for radiometric space techniques. GPS Solutions, 12, 65-70.
  • Li, X., Dick, G., Lu, C., Ge, M., Nilsson, T., Ning, T., Wickert, J., Schuh, H. (2015) Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor from BeiDou, Galileo, GLONASS, and GPS Observations. IEEE Transactions on Geoscience and Remote Sensing, 53, 6385-6393.
  • Li, X., Tan, H., Li, X., Dick, G., Wickert, J., Schuh, H. (2018) Real-Time Sensing of Precipitable Water Vapor from BeiDou Observations: Hong Kong and CMONOC Networks. Journal of Geophysical Research: Atmospheres, 123, 7897-7909.
  • Li, X., Zus, F., Lu, C., Dick, G., Ning, T., Ge, M., Wickert, J., Schuh, H. (2015) Retrieving of atmospheric parameters from multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model. Journal of Geophysical Research: Atmospheres, 120, 7189-7204.
  • Lu, C., Chen, X., Liu, G., Dick, G., Wickert, J., Jiang, X., Zheng, K., Schuh, H. (2017) Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams. Remote Sensing, 9, 1317.
  • Lu, C., Li, X., Nilsson, T., Ning, T., Heinkelmann, R., Ge, M., Glaser, S., Schuh, H. (2015) Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. Journal of Geodesy, 89, 843-856.
  • Mendez Astudillo, J., Lau, L., Tang, Y. T., Moore, T. (2018) Analysing the Zenith Tropospheric Delay Estimates in On-line Precise Point Positioning (PPP) Services and PPP Software Packages. Sensors (Basel), 18.
  • Oikonomou, C., Tymvios, F., Pikridas, C., Bitharis, S., Balidakis, K., Michaelides, S., Haralambous, H., Charalambous, D. (2018) Tropospheric delay performance for GNSS integrated water vapor estimation by using GPT2w model, ECMWF's IFS operational model and in situ meteorological data. Advances in Geosciences, 45, 363-375.
  • Pan, L., Guo, F. (2018) Real-time tropospheric delay retrieval with GPS, GLONASS, Galileo and BDS data. Sci Rep, 8, 17067.
  • Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. Bulletin Géodésique, 105, 279-298.
  • Ssenyunzi, R. C., Oruru, B., Mutonyi D’ujanga, F., Realini, E., Barindelli, S., Tagliaferro, G., Van De Giesen, N. (2019) Variability and accuracy of Zenith Total Delay over the East African tropical region. Advances in Space Research, 64, 900-920.
  • Xu, A., Xu, Z., Ge, M., Xu, X., Zhu, H., Sui, X. (2013) Estimating zenith tropospheric delays from BeiDou navigation satellite system observations. Sensors (Basel), 13, 4514-4526.
  • Zhao, Q., Yao, Y., Cao, X., Yao, W. (2019) Accuracy and reliability of tropospheric wet refractivity tomography with GPS, BDS, and GLONASS observations. Advances in Space Research, 63, 2836-2847.
  • Zheng, F., Lou, Y., Gu, S., Gong, X., Shi, C. (2018) Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. Journal of Geodesy, 92, 545-560.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24cf4e8c-2cf6-4ec4-8db0-5869d55a470b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.