PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical procedures and their practical application in PV modules’ analyses. Part 2, Useful fractions and APE

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article regards aspects of PV modules tested with the use of natural sunlight. The analysis of spectral structure of solar energy resources in southern Poland, carried out on the basis of meteorological data originating from SolarLab PW Wrocław and AGH Kraków, Poland [1] was used in the article. It is a continuation of the article: Analysis of solar energy resources in southern Poland for photovoltaic applications [1], describing the method to determine spectral parameters of average photon energy (APE) and useful fraction (UF) with the use of a solar radiation spectrum simulator. This article, however, includes an experimental presentation of their impact on PV conversion of modules with different absorbers. Theory and practice of the measurements were described with the use of spectral parameters such as: UF, APE. Their influence on the efficiency of modules’ photovoltaic conversion with various spectral characteristics of absorbers was presented. The most recent methods described, which characterise the structure of solar energy resources such as annual distributions of APE and UF, have not been commonly used yet in Poland and other countries, even though they most precisely define adjustment of the spectral factor to the selected PV module.
Twórcy
  • Institute of Biotechnology, University of Opole, 6 Kard. B. Kominka St., 45-032 Opole, Poland
  • Institute of Biotechnology, University of Opole, 6 Kard. B. Kominka St., 45-032 Opole, Poland
Bibliografia
  • [1] T. Rodziewicz, J. Teneta, A. Zaremba, M. Wacławek, Analysis of solar energy resources in southern Poland for photovoltaic applications, Ecol. Chem. Eng. S. 20 (2013) 177–198, http://dx.doi.org/10.2478/eces-2013-0014.
  • [2] A. Louwen, A.C. de Waal, R.E.I. Schropp, A.P.C. Faaij, W.G.J.H.M. van Sark, Comprehensive characterisation and analysis of PV module performance under real operating conditions, Progress. Photovol. Res. Appl. 25 (2017) 218, http://dx.doi.org/10.1002/pip.2848.
  • [3] R. Gottschalg, T.R. Betts, A. Eeles, S.R. Williams, J. Zhu, Influences on the energy delivery of thin film photovoltaic modules, Sol. Energy Mater. Sol. Cells 119 (2013) 169–180 https://www.sciencedirect.com/science/article/pii/S0927024813002961.
  • [4] S.M. Pietruszko, M. Gradzki, Performance of a grid connected small PV system in Poland, Acs Appl. Energy Mater. 74 (2003) 177–184 https://www.sciencedirect.com/science/article/pii/S0306261902001447.
  • [5] D. Dirnberger, G. Blackburn, B. Müller, C. Reise, On the impact of solar spectral irradiance on the yield of different PV technologies, Sol. Energy Mater. Sol. Cells 132 (2015) 431–442 https://www.sciencedirect.com/science/article/pii/S0927024814005169.
  • [6] C. Cornaro, A. Andreotti, Influence of Average Photon Energy index on solar irradiance characteristics and outdoor performance of photovoltaic modules, Prog. Photovolt. Res. Appl. 21 (2013) 996–1003, http://dx.doi.org/10.1002/pip.2194.
  • [7] J.A. Chojnacki, J. Teneta, Ł. Wieckowski, ˛ Development of PV systems and research studies on photovoltaics at the AGH University of Science and Technology in Krakow, Proc. 22nd EC PV Solar Energy Conference (2007) 3049–3052 https://www.eupvsec-proceedings.com/.
  • [8] T. Zdanowicz, M. Prorok, W. Kolodenny, H. Roguszczak, Outdoor data acquisition system with advanced database for PV modules characterization, 3rd WCPEC (2003) http://www.pvsc-proceedings.org/.
  • [9] T. Zdanowicz, H. Roguszczak, Automated outdoor data acquisition system for prolonged testing of PV modules, Proc 13th EC PV Solar Energy Conference (1995), Nice, 2322 https://www.eupvsec-proceedings.com/.
  • [10] C.N. Jardine, T.R. Betts, R. Gottschalg, D.G. Infield, K. Lane, Influence of spectral effects on the performance of multijunction amorphous silicon cells, Proc. PV in Europe Conference and Exhibition, WIP (2002) https://www.eupvsecproceedings.com/.
  • [11] T. Minemoto, M. Toda, S. Nagae, M. Gotoh, A. Nakajima, K. Yamamoto, H. Takakura, Y. Hamakawa, Effect of spectral irradiance distribution on the outdoor performance of amorphous Si//thin-film crystalline Si stacked photovoltaic modules, Sol. Energy Mater. Sol. Cells 91 (2007) 120–122 https://www.sciencedirect.com/science/article/pii/S0927024806003369.
  • [12] L. Gray Jeffery, The physics of the solar cell, chapter 3, in: A. Luque, S. Hegedus (Eds.), Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, England, 2003 http://kashanu.ac.ir/Files/Content/Handbook.pdf.
  • [13] IEC 60904-3, Photovoltaic Devices – Part 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices With Reference Spectral Irradiance Data, 2008. Geneva, http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP ORG ID:1276, 2nd edition, 2008.
  • [14] C.A. Gueymard, D. Myers, K. Emery, Proposed reference irradiance spectra for solar energy systems testing, Solar. Ener. 73 (2002) 443–467 https://www.sciencedirect.com/science/article/pii/S0038092X03000057.
  • [15] C.R. Osterwald, K.A. Emery, D.R. Myers, C.J. Riordan, Extending the spectral range of silicon-based direct-beam solar spectral radiometric measurements, in: Conference Record of theTwentieth IEEE Photovoltaic Specialists Conference, 1988, pp. 1246 http://www.pvsc-proceedings.org.
  • [16] R. Gottschalga, D.G. Infielda, M.J. Kearney, Experimental study of variations of the solar spectrum of relevance to thin film solar cells, Sol. Energy Mater. Sol. Cells 79 (2003) 527–537 https://www.sciencedirect.com/science/article/pii/S0927024803001065.
  • [17] R. Gottschalg, T.R. Betts, D.G. Infield, M.J. Keamey, Experimental investigation of spectral effects on amorphous silicon solar cells in outdoor operation, 29th IEEE Photovoltaic Specialists Conference (2002) 1138–1141 http://www.pvsc-proceedings.org.
  • [18] M. Krawczynski, M.B. Strobel, T.R. Betts, R. Gottschalg, Spectral influences on estimations of useful irradiance for different PV technologies, Sixth Photovoltaic Science Application and Technology Conference (PVSAT-6) (2010) 5.
  • [19] T. Rodziewicz, Analysis of Semiconductor Photovoltaic Modules. PhD, Military University of Technology, Warszawa, 2004.
  • [20] S. Nann, C. Riordan, Solar spectral irradiance under clear and cloudy skies: measurements and a semiempirical model, J. Appl. Meteorol. Climatol. 30 (1991) 447–462.
  • [21] S. Nann, C. Riordan, Solar spectral irradiance under overcast skies (solar cell performance effects), Proc Twenty First IEEE Photovoltaic Specialists Conference Kissimmee (1990) 1110–1115.
  • [22] R.E. Bird, C. Riordan, Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted Planes at the Earth’s surface for cloudless atmospheres, J. Clim. Appl. Meteorol 25 (1986) 87–97.
  • [23] R.E. Bird “SPCTRAL2”. http://rredc.nrel.gov/solar/pubs/spectral/model (SPCTRAL2 was originally written in 1986, but the version on the NREL website is more recent) (1986).
  • [24] R.E. Bird, A simple solar spectral model for direct-normal and diffuse irradiance, Solar Ener 32 (1984) 461–471.
  • [25] R. Perez, R. Seals, P. Ineichen, R. Stewart, D. Menicucci, A new simplified version of the Perez diffuse irradiance model for tilted surfaces, Solar Ener 39 (1987) 221–231.
  • [26] R. Perez, R. Stewart, C. Arbogast, R. Seals, J. Scott, An anisotropic hourly diffuse radiation model for sloping surfaces: description, performance validation, site dependency evaluation, Solar Energy 36 (1986) 481–497.
  • [27] S. Nann, C. Riordan, Solar spectral irradiance under clear and cloudy skies: measurements and a semiempirical model, J. Appl. Meteorol. Climatol. 30 (1991) 447–462.
  • [28] C. Whitaker, J. Newmiller, Photovoltaic Module Energy Rating Procedure. Final Subcontract Report, Newmiller Endecon Engineering San Ramon, California, 1998, NREL contract No. DE-AC36-83CH10093.
  • [29] C. Gueymard, SMARTS2, a Simple Model of the Atmospheric Radiative Transfer of Sunshine. FSEC-PF-270-95, Florida Solar Energy Centre, Florida, 1995 https://www.nrel.gov/grid/solar-resource/smarts.html.
  • [30] D.R. Myers, K. Emery, Revising and Validating Spectral Irradiance Standards for Photovoltaic Performance, NREL/CP-560-32284, Golden Colorado, May, Consultant Ch. Gueymard, 2002 https://www.nrel.gov/docs/fy02osti/32284.pdf.
  • [31] M.P. Utrillas, J.V. Boscá, Jose A. Martínez-Lozano, J. Canada, ˜ F. Tena, J.M. Pinazo, A comparative study of SPECTRAL2 and SMARTS2 parameterized model based on spectra irradiance measurements at Valencis (Spain), Solar. Energy 63 (1998) 161–171 https://www.sciencedirect.com/science/article/pii/S0038092X98000589.
  • [32] A. Foyo-Moreno, J. Vida, F.J. Olmo, L. Alados-Arboledas, Estimating solar ultraviolet irradiance (290-385 nm) by means of the spectral parametric models: SPCTRAL2 and SMARTS2, Ann. Geophys. Discuss. 18 (2000) 1382–1389 https://link.springer.com/article/10.1007/s00585-000-1382-2.
  • [33] C.A. Gueymard, Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States, Sol. Energy 53 (1994) 57–71, http://dx.doi.org/10.1016/S0038-092X(94)90606-8.
  • [34] IEC 60904-1: Measurement of photovoltaic current-voltage characteristics, IEC norm No. 60904-1 2nd edition, 2006-09. https://www.iec.ch/search/?q=IEC%2060904-1.
  • [35] IEC 60891, Procedures for temperature and irradiance corrections to measured I-V characteristics of crystalline silicon photovoltaic devices, IEC norm No. 60891 2nd edition, 2009-12, https://www.iec.ch/search/?q=[17]IEC%2060891.
  • [36] G. Blaesser, Miyazaki, 13-15 Nov.Proc. 9th Intern. PV Science and Engineering Conf.1996, Proc. 9th Intern. PV Science and Engineering Conf. (1996) http://www.pvsc-proceedings.org.
  • [37] G. Blaesser, PV array data translation procedure, in: Proc. 13th EC PVSEC, 1995 https://www.eupvsec-proceedings.com/.
  • [38] S. Corrs, M. Böhm, Validation and comparison of curve correction procedures for silicon solar cells, Proc 14th PVSEC (1997) 220–223 https://www.eupvsecproceedings.com/.
  • [39] B. Marion, S. Rummel, A. Anderber, Current-voltage translation by bilinear interpolation, Prog. Photovolt. Res. Appl. 12 (2004) 593–607, http://dx.doi.org/10.1002/pip.551.
  • [40] D.L. King, J.A. Kratochvil, W.E. Boyson, Temperature coefficients for PV modules and arrays. Measurement methods, difficulties, and results, Proc. 26th IEEE PVSC (1997) http://www.pvsc-proceedings.org.
  • [41] A. Virtuani, D. Pavanello, G. Friesen, Overview of temperature coefficients of different thin film photovoltaic technologies, Proc. 25th EU PVSEC (2010) 4248–4252 https://www.eupvsec-proceedings.com/.
  • [42] Y. Tsuno, Y. Hishikawa, K. Kurokawa, Temperature and irradiance dependence of the I-V curves of various kinds of solar cells, Technical Digest of the PVSEC 15 (2005) 422–423 http://www.pvsc-proceedings.org.
  • [43] E. Skoplaki, J.A. Palyvos, Operating temperature of photovoltaic modules: a survey of pertinent correlation, Renew. Energy 34 (2009) 23–29 https://www. sciencedirect.com/science/article/pii/S0960148108001353.
  • [44] T. Rodziewicz, M. Rajfur, Numerical procedures and their practical application in PV modules analyses. Part I: air mass, Opto-electron. Rev. 27 (2019) 39–57, http://dx.doi.org/10.1016/j.opelre.2019.02.002.
  • [45] IEC 61853-4 ED1. Photovoltaic (PV) module performance testing and energy rating - Part 4: Standard reference climatic profiles, http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP ORG ID:1276, http://www.iec.ch/dyn/www/f?p=103:38:6878505369315::::FSP ORG ID, FSP APEX PAGE,FSP PROJECT ID:1276,23,22384.
  • [46] T. Zdanowicz, T. Rodziewicz, M. Waclawek, Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes location, Sol. Energy Mater. Sol. Cells 87 (2005) 757–769 https://www.sciencedirect.com/science/article/pii/S0927024804003939.
  • [47] Photovoltaic (PV) module performance testing and energy rating – Part 1: Irradiance and temperature performance measurements and Power Rating, 61853-1 Draft H (WG2 working draft), https://www.iec.ch/search/?q=[17]IEC%2060891.
  • [48] Photovoltaic (PV) module performance testing and energy rating – Part 2: Spectral response, incidence angle and module operating temperature measurements, 61853-2 Draft E (WG2 working draft), https://www.iec.ch/search/?q=[17]IEC%2060891.
  • [49] Photovoltaic (PV) module performance testing and energy rating – Part 3: Energy rating of PV modules, 61853-3 Draft C (WG2 working draft), https://www.iec.ch/search/?q=[17]IEC%2060891.
  • [50] G. Tamizh Mani, K. Paghasian, J. Kuitche, M. Gupta, G. Sivasubramanian, Photovoltaic module power rating per IEC 61853-1 standard – a study under natural sunlight, Solar ABCs Study Rep. (March) (2011) www.solarABCs.org.
  • [51] R. Gottschalgl, J. del Cueto, T.R. Bettsl, S.R. Williams, D.G. Infield, Investigating the seasonal performance of amorphous silicon single- and multi-junction modules, Proceedings of 3rd World Conference on Photovoltaic Energy Conversion 2 (2003) 2078–2081 https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/8220.
  • [52] R. Gottschalg, T.R. Betts, D.G. Infield, M.J. Keamey, Experimental investigation of spectral effects on amorphous silicon solar cells in outdoor operation, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference (2002) 1138–1141 https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/8219.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24cf43a1-8e92-424d-819d-f0c35146d10b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.