PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative FE-studies of interface behavior of granular Cosserat materials under constant pressure and constant volume conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article shows the outcomes of a systematic series of finite element (FE) calculations relevant to the shear behavior of a particulate-continuum interface system under different normal boundary conditions. In this respect, shearing of a thin and long granular Cosserat layer in the vicinity of a rigid moving wall with varied surface roughness values is analyzed under constant normal pressure and constant volume conditions. The material behavior is defined with a special elasto-plastic Cosserat model, taking into account micro-rotation, micro-curvature, couple stress, and mean particle size. The interaction between the layer of boundary particles and the surface roughness of the adjoining bottom wall is modeled by the rotation resistance of particles along the wall surface. Herein, the coupled effects of normal confining constraints imposed on the layer and the surface roughness of the bottom wall, are considered on the response of granular material under shearing. The influences of pressure level and initial void ratio are explored as well. Numerical results demonstrate that the dilatancy constraint prescribed to the interface plane in the normal direction, and the wall roughness have visible influences on the interface shear resistance as well as the deformation field formed within the layer. After large shearing, the width of the localized zone along the wall does not necessarily depend on the normal confining constraint and the applied pressure level. However, the localized zone characteristics and the interface shear response are mainly affected by the initial void ratio of the material. In addition to FE analyses, DEM-based simulations are also performed to investigate the micro-mechanical response of granular medium adjacent to a wall under shearing. FE predictions are qualitatively compared with DEM results, and reasonable agreement is observed.
Rocznik
Strony
421--470
Opis fizyczny
Bibliogr. 90 poz., rys. kolor., wykr.
Twórcy
  • Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University (SBU), Tehran, Iran
  • R & D, Virtual Product Development Technology, Caterpillar Inc., Mossville, IL 61552, U.S.A
autor
  • Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University (SBU), Tehran, Iran
Bibliografia
  • 1. J. Tejchman, FE modeling of shear localization in granular bodies with micro-polar hypoplasticity, Springer Series in: Geomechanics and Geoengineering, W. Wu, R. Borja [eds.],Springer, Berlin, 2008.
  • 2. J.C. Santamarina, H.S. Shin, Friction in granular media, Proceeding of Meso-scaleShear Physics in Earthquake and Landslide Mechanics, Y.H. Hatzor, J. Sulem, I. Vardoulakis [eds.], CRC Press, pp. 157–188, 2009.
  • 3. R. Dyvik, T. Berm, S. Lacasse, B. Raadim, Comparison of truly undrained andconstant volume direct simple shear tests, Géotechnique, 37, 1, 310, 1987.
  • 4. D. Negussey, W.K.D. Wijewickreme, Y.P. Vaid, Constant-volume friction angle ofgranular materials, Canadian Geotechnical Journal, 25, 1, 50–55, 1988.
  • 5. M. Boulon, Basic features of soil structure interface behavior, Computers and Geotechnics, 7, 115–131, 1989.
  • 6. M. Boulon, R. Nova, Modelling of soil-structure interface behaviour a comparison between elastoplastic and rate type laws, Computers and Geotechnics, 9, 1-2, 21–46, 1990.
  • 7. Y. Tsubakihara, H. Kishida, Frictional behaviour between normally consolidated clayand steel by two direct shear type apparatuses, Soils and Foundations, 33, 2, 1–13, 1993.
  • 8. S. Paikowsky, C.M. Player, P.J. Connors, A dual interface apparatus for testing unrestricted friction of soil along solid surfaces, ASTM Geotechnical Testing Journal, 18,2, 168–193, 1995.
  • 9. T.D. Stark, I.A. Contreras, Constant volume ring shear apparatus, ASTM Geotechnical Testing Journal, 19, 1, 3–11, 1996.
  • 10. E. Evgin, K. Fakharian, Effect of stress paths on the behaviour of sand steel interfaces,Canadian Geotechnical Journal, 33, 6, 853–865, 1996.
  • 11. K. Fakharian, E. Evgin, An automated apparatus for three-dimensional monotonic andcyclic testing of interfaces, ASTM Geotechnical Testing Journal, 19, 1, 22–31, 1996.
  • 12. J. Qiu, F. Tatsuoka, T. Uchimura, Constant pressure and constant volume direct shear tests on reinforced sand, Soils and Foundations, 40, 4, 1–17, 2000.
  • 13. V.K. Garga, J.A. Infante Sedano, Steady state strength of sands in a constant volumering shear apparatus, ASTM Geotechnical Testing Journal, 25, 4, 414–421, 2002.
  • 14. A. Afzali-Nejad, A. Lashkari, A. Martinez, Stress-displacement response of sand–geosynthetic interfaces under different volume change boundary conditions, Journal ofGeotechnical and Geoenvironmental Engineering, 147, 8, 04021062-1.
  • 15. J. Tejchman, Modelling of shear localisation and autogeneous dynamic effects in granular bodies, Publication Series of the Institute of Soil and Rock Mechanics, vol. 140, G.Gudehus, O. Natau [eds.], University Karlsruhe, Karlsruhe, Germany, pp. 1–353, 1997.
  • 16. A. Di Donna, A. Ferrari, L. Laloui, Experimental investigations of the soil-concreteinterface: physical mechanisms, cyclic mobilisation and behaviour at different temperatures, Canadian Geotechnical Journal, 53, 4, 659–672, 2015.
  • 17. M. Boulon, P. Garnica, P.A. Vermeer, Soil-structure interaction: FEM computations, Studies in Applied Mechanics, 42, 147–171, 1995.
  • 18. V. De Gennaro, P. Lerat, Soil-structure interface behaviour under cyclic loading, Proceeding of the Second International Symposium on Pre-failure Deformation Characteristics of Geomaterials, M. Jamiolkowski, R. Lancellotta, D. Lo Pretti [eds.], Torino, Italy,1999.
  • 19. J. Wang, S. Liu, Y.P. Cheng, On the role of normal boundary condition in interfaceshear test for the determination of skin friction along pile shaft, Canadian GeotechnicalJournal, 54, 9, 1245–1256, 2017.
  • 20. F. Tatsuoka, T. Uchimura, M. Tateyama, Preloaded and prestressed reinforced soil,Soils and Foundations, 37, 3, 79–94, 1997.
  • 21. T. Uchimura, F. Tatsuoka, M. Tateyama, T. Koga, Behavior of the first prototypeand full-scale models of PLPS geosynthetic-reinforced soil structure, Boston, Annual Convention, ASCE: Geosynthetics in Foundation Reinforcement and Erosion Control Systems,Proceedings of Geo-Congress 98, ASCE, Boston, 34–48, 1998.
  • 22. Y. Yoshimi, T. Kishida, A ring torsion apparatus for evaluating friction between soiland metal surfaces, ASTM Geotechnical Testing Journal, 4, 4, 148–152, 1981.
  • 23. T. Tika-Vassilikos, Clay-on-steel ring shear tests and their implications for displacementpiles, ASTM Geotechnical Testing Journal, 14, 4, 457–463, 1991.
  • 24. Y. Tsubakihara, H. Kishida, Frictional behaviour between normally consolidated clayand steel by two direct shear type apparatuses, Soils and Foundations, 33, 2, 1–13, 1993.
  • 25. J. Tejchman, G. Gudehus, Shearing of a narrow granular layer with polar quantities, International Journal for Numerical and Analytical Methods in Geomechanics, 76, 2,513–536, 2001.
  • 26. T. Ho, R. Jardine, N. Anh-Minh, Large-displacement interface shear between steel andgranular media, Géotechnique, 61, 3, 221–234, 2011.
  • 27. H. Liu, E. Song, H.I. Ling, Constitutive modeling of soil-structure interface throughthe concept of critical state soil mechanics, Mechanics Research Communications, 33,515–531, 2006.
  • 28. S. Costa D. Aguiar, A. Modaressi-Farahmand-Razavi, J.A. dos Santos, F. Lopez-Caballero, Elastoplastic constitutive modelling of soil structure interfaces undermonotonic and cyclic loading, Computers and Geotechnics, 38, 4, 430–447, 2011.
  • 29. W. Huang, E. Bauer, S.W. Scott, Behavior of interfacial layer along granular soilstructure interfaces, Structural Engineering and Mechanics, 15, 3, 315–329, 2003.
  • 30. R. De Borst, A generalisation of J2-flow theory for polar continua, Computer Methodsin Applied Mechanics and Engineering, 103, 347–362, 1993.
  • 31. P. Unterreiner, I. Vardoulakis, M. Boulon, J. Sulem, Essential features of a Cosserat continuum in interfacial localization, Proceeding of 3rd International Workshop onLocalization and Bifurcation Theory for Soils and Rocks, R. Chambon, J. Desrues, I. Vardoulakis [eds.], Balkema, Rotterdam, 141–155, 1994.
  • 32. J. Tejchman, W. Wu, Numerical Study on Sand and Steel Interfaces, Mechanics Research Communications, 21, 2, 109–119, 1994.
  • 33. I. Vardoulakis, J. Sulem, Bifurcation Analysis in Geomechanics, Blackie Academic &Professional (an imprint of Chapman & Hall): Glasgow, London, U.K., 1995.
  • 34. X.A. Li, H.B. Tang, A consistent return mapping algorithm for pressure-dependentelastoplastic Cosserat continua and modeling of strain localization, Computers and Structures, 83, 1–10, 2005.
  • 35. B. Ebrahimian, A. Noorzad, M.I. Alsaleh, Modeling shear localization along granularsoil-structure interfaces using elasto-plastic Cosserat continuum, International Journal of Solids and Structures, 49, 257–278, 2012.
  • 36. B. Ebrahimian, A. Noorzad, M.I. Alsaleh, Modeling interface shear behavior of granular materials using micro-polar continuum approach, Continuum Mechanics and Thermodynamics, 30, 1, 95–126, 2018.
  • 37. B. Ebrahimian, A. Noorzad, M.I. Alsaleh, A Numerical Study on Interface Shearingof Granular Cosserat Materials, European Journal of Environmental and Civil Engineering, 30, 1, 2019, DOI: 10.1080/19648189.2019.1627249.
  • 38. J. Tejchman, E. Bauer, Numerical simulation of shear band formation with a polarhypoplastic model, Computers and Geotechnics, 19, 3, 221–244, 1996.
  • 39. E. Bauer, W. Huang, Numerical study of polar effects in shear zone, Proceeding of 7thInternational Symposium on Numerical Models in Geomechanics, G.N. Pande, S. Pietruszczak, H. Schweiger [eds.], Balkema, Rotterdam, 133–138, 1999.
  • 40. J. Tejchman, Behaviour of granular bodies in induced shear zones, Granular Matter,212, 77–96, 2000.
  • 41. W. Huang, E. Bauer, Numerical investigations of shear localization in a micro-polarhypoplastic material, International Journal for Numerical and Analytical Methods in Geomechanics, 27, 325–352, 2003.
  • 42. E. Bauer, W. Huang, Effect of particle rotations on the interface behaviour betweena granular layer and parallel rough plates, Science and Engineering of Composite Materials,11, 4, 239–246, 2004.
  • 43. J. Tejchman, W. Wu, FE-investigations of micro-polar boundary conditions along interface between soil and structure, Granular Matter, 12, 4, 399–410, 2010.
  • 44. P.V. Lade, R.B. Nelson, Modeling the elastic behavior of granular materials, International Journal for Numerical and Analytical Methods in Geomechanics, 11, 521–542,1987.
  • 45. M.K. Kim, P.V. Lade, Single hardening constitutive model for frictional materials, Computers and Geotechnics, 5, 307–324, 1988.
  • 46. P.V. Lade, M.K. Kim, Single hardening plasticity model for frictional materials – II.Yield criterion and plastic work contour, Computers and Geotechnics, 6, 13–29, 1988.
  • 47. P.V. Lade, M.K. Kim, Single hardening plasticity model for frictional materials – III.Comparisons with experimental data, Computers and Geotechnics, 6, 31–47, 1988.
  • 48. M.I. Alsaleh, G. Voyiadjis, K. Alshibli, Modeling strain localization in granular materials using micropolar theory: mathematical formulations, International Journal for Numerical and Analytical Methods in Geomechanics, 30, 15, 1501–1524, 2006.
  • 49. K. Alshibli, M.I. Alsaleh, G. Voyiadjis, Modeling strain localization in granular materials using micropolar theory: numerical implementation and verification, InternationalJournal for Numerical and Analytical Methods in Geomechanics, 30, 15, 1525–1544, 2006.
  • 50. A.C. Eringen, Linear theory of nonlocal microelasticity and dispersion of plane waves, Letters in Applied and Engineering Sciences, 1, 2, 129–146, 1973.
  • 51. K. Willam, A. Dietsche, M.M. Iordache, P. Steinmann, Localization in micropolar continua, Proceeding of Continuum Models for Materials with Microstructure, H.B. Mühlhaus [ed.], John Wiley and Sons, pp. 297–339, 1995.
  • 52. K.W. Tomantschger, A boundary value problem in the micropolar theory, ZAMM –Journal of Applied Mathematics and Mechanics, 82, 6, 421–422, 2002.
  • 53. H.B. Mühlhaus, Shear band analysis in granular materials by Cosserat theory, IngenieurArchiv., 56, 389–399, 1986.
  • 54. H.B. Mühlhaus, Application of Cosserat theory in numerical solutions of limit load problems, IngenieurArchiv., 59, 124–137, 1989.
  • 55. ABAQUS, ABAQUS User’s Manual Version 6.3, Hibbitt, Karlsson and Sorensen Inc.:Pawtucket, RI, USA, 2002.
  • 56. J. Voyiadjis, M.I. Alsaleh, K. Alshibli, Evolving internal length scales in plasticstrain localization for granular materials, International Journal of Plasticity, 21, 2000–2024, 2005.
  • 57. M. I. Alsaleh, A. Kitsabunnarat, S. Helwany, Strain localization and failure loadpredictions of geosynthetic reinforced soil structures, Interaction and Multiscale Mechanics,2, 3, 235–261, 2009.
  • 58. B. Ebrahimian, A. Noorzad, Effect of periodic fluctuation of soil particle rotation resistance on interface shear behavior, IOP Conf. Series: Materials Science and Engineering,10, 2010, doi:10.1088/1757-899X/10/1/012082.
  • 59. B. Ebrahimian, A. Noorzad, M.I. Alsaleh, Effects of periodic fluctuations of micropolar boundary conditions on shear localizations in granular soil–structure interaction, International Journal for Numerical and Analytical Methods in Geomechanics, 36, 855–880,2012.
  • 60. B. Ebrahimian, A. Noorzad, Numerical investigations of shear strain localization inan elasto-plastic Cosserat material, Proceeding of 18th International Conference on SoilMechanics and Geotechnical Engineering, Paris, France, 703–706, 2013.
  • 61. B. Ebrahimian, Numerical investigations of shear banding in granular materials, Proceeding of 10th HSTAM International Congress on Mechanics, Paper No. 103, Chania,Crete, Greece, 2013.
  • 62. B. Ebrahimian, Evolution of shear localization in an elasto-plastic cosserat material under shearing, Key Engineering Materials, 577-578, 21–24, 2014.
  • 63. B. Ebrahimian, A. Noorzad, M.I. Alsaleh, FE simulation of shear localization alonggranular soil-structure interfaces using micro-polar elasto-plasticity, Mechanics Research Communications, 39, 28–34, 2012.
  • 64. J. Tejchman, Scherzonenbildung und verspannungseffekte in granulatenunterberücksichtigung von korndrehungen, Publication Series of the Institute of Soil and Rock Mechanics,vol. 140, G. Gudehus, O. Natau [eds.], University Karlsruhe, Karlsruhe, Germany, 1–236,1989.
  • 65. M. Uesugi, H. Kishida, Y. Tsubakihara, Behavior of sand particles in sand-steelfriction, Soils and Foundations, 28, 1, 107–118, 1988.
  • 66. J. Tejchman, W. Wu, Experimental and numerical study of sand-steel interfaces, International Journal for Numerical and Analytical Methods in Geomechanics, 19, 513–536,1995.
  • 67. A. Grabowski, M. Nitka, J. Tejchman, 3D DEM simulations of monotonic interfacebehavior between cohesionless sand and rigid wall of different roughness, Acta Geotechnica,16, 1001–1026, 2021.
  • 68. A. Grabowski, M. Nitka, J. Tejchman, Comparative 3D DEM simulations of sand–structure interfaces with similarly shaped clumps versus spheres with contact moments,Acta Geotechnica, 2021, DOI: org/10.1007/s11440-021-01255-0.
  • 69. B. Ebrahimian, E. Bauer, Numerical simulation of the effect of interface friction ofa bounding structure on shear deformation in a granular soil, International Journal forNumerical and Analytical Methods in Geomechanics, 36, 2, 1486–1506, 2012.
  • 70. B. Ebrahimian, E. Bauer, Numerical analysis of interface shear test box size effect onshear behavior of soil specimen using micro-polar continuum approach, Proceeding of 10thInternational Workshop on Bifurcation and Degradation in Geomaterials (IWBDG 2014),K. Chau, J. Zhao [eds.], Springer, 143–148, 2015.
  • 71. K.A. Alshibli, S. Sture, Sand shear band thickness measurements by digital imagingtechniques, Journal of Computing in Civil Engineering, 13, 2, 103–109, 1999.
  • 72. K.A. Alshibli, S. Sture, Shear band formation in plane strain experiments of sand, Journal of Geotechnical and Geoenvironmental Engineering, 126, 6, 495–503, 2000.
  • 73. I. Vardoulakis, K.R. Shah, P. Papanastasiou, Modelling of tool-rock shear interfacesusing gradient-dependent flow theory of plasticity, International Journal of Rock Mechanicsand Mining Science & Geomechanics Abstracts, 29, 6, 573–582, 1992.
  • 74. I. Vardoulakis, P. Unterreiner, Interfacial localisation in simple shear tests on a granular medium modelled as a Cosserat continuum, Proceeding of Mechanics of GeomaterialInterfaces, A.P.S. Selvadurai, M.J. Boulon (eds.), Elsevier Science B.V., 42, 487–512, 1995.
  • 75. W. Huang, S. Sloan, D. Sheng, Analysis of plane Couette shear test of granular mediain a Cosserat continuum approach, Mechanics of Materials, 69, 106–115, 2014.470 B. Ebrahimian, M. I. Alsaleh, A. Kahbasi
  • 76. P.A. Cundall, A discrete numerical model for granular assemblies, Géotechnique, 29,1, 47–65, 1979.
  • 77. J. Wang, M.S. Gutierrez, J.E. Dove, Numerical studies of shear banding in interfaceshear tests using a new strain calculation method, International Journal for Numerical and Analytical Methods in Geomechanics, 31, 12, 1349–1366, 2007.
  • 78. J. Wang, M. Jiang, Unifed soil behavior of interface shear test and direct shear test under the influence of lower moving boundaries, Granular Matter, 13, 5, 631–641, 2011.
  • 79. W. Huang, L. Huang, D. Sheng, S. Sloan, DEM modelling of shear localization ina plane Couette shear test of granular materials, Acta Geotechnica, 10, 3, 389–397, 2015.
  • 80. A. Martinez, J.D. Frost, Particle-scale effects on global axial and torsional interfaceshear behavior, International Journal for Numerical and Analytical Methods in Geomechanics, 41, 3, 400–421, 2016.
  • 81. X.Y. Jing, W.H. Zhou, Y. Li, Interface direct shearing behavior between soil and sawtooth surfaces by DEM simulation, Procedia Engineering, 175, 36–42, 2017.
  • 82. X.Y. Jing, W.H. Zhou, H.X. Zhu, Z.Y. Yin, Y. Li, Analysis of soil-structural interfacebehavior using three-dimensional DEM simulations, International Journal for Numerical and Analytical Methods in Geomechanics, 42, 2, 339–357, 2018.
  • 83. X. Gu, M. Huang, Critical state shear behavior of the soil-structure interface determinedby discrete element modeling, Particuology, 35, 68–77, 2017.
  • 84. H. Zhu, W.H. Zhou, X.Y. Jing, Z.Y. Yin, Numerical study of the formation of shearbands in soil under interface shearing, Procedia Engineering, 175, 102–109, 2017.
  • 85. H.X. Zhu, W.H. Zhou, X.Y. Jing, Z.Y. Yin, Observations on fabric evolution toa common micromechanical state at the soil-structure interface, International Journal forNumerical and Analytical Methods in Geomechanics, 43, 15, 2449–2470, 2019.
  • 86. M. Huang, Y. Chen, X. Gu, Discrete element modeling of soil-structure interface behavior under cyclic loading, Computers and Geotechnics, 107, 14–24, 2019.
  • 87. W.H. Zhou, X.Y. Jing, Z.Y. Yin, X. Geng, Effects of particle sphericity and initialfabric on the shearing behavior of soil–rough structural interface, Acta Geotechnica, 14,3, 1699–1716, 2019.
  • 88. W.B, Chen, W.H. Zhou, J. Alberto dos Santos, Analysis of consistent soil–structureinterface response in multi–directional shear tests by discrete element modeling, Transportation Geotechnics, 24, 100379, 2020.
  • 89. Itasca Consulting Group, PFC3D – Particle flow code in 3 dimensions user’s manual(version 5.0), Minneapolis, Minnesota, USA, 2014.
  • 90. W. Ehlers, E. Ramm, S. Diebels, G.A. D’addetta, From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses, International Journal of Solids and Structures, 40, 24, 6681–6702, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24cec9b7-27ae-4f5a-b5b0-a0ae8156bc94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.