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This article shows the outcomes of a systematic series of finite element (FE) cal-
culations relevant to the shear behavior of a particulate-continuum interface system
under different normal boundary conditions. In this respect, shearing of a thin and
long granular Cosserat layer in the vicinity of a rigid moving wall with varied surface
roughness values is analyzed under constant normal pressure and constant volume
conditions. The material behavior is defined with a special elasto-plastic Cosserat
model, taking into account micro-rotation, micro-curvature, couple stress, and mean
particle size. The interaction between the layer of boundary particles and the surface
roughness of the adjoining bottom wall is modeled by the rotation resistance of parti-
cles along the wall surface. Herein, the coupled effects of normal confining constraints
imposed on the layer and the surface roughness of the bottom wall, are considered
on the response of granular material under shearing. The influences of pressure level
and initial void ratio are explored as well. Numerical results demonstrate that the
dilatancy constraint prescribed to the interface plane in the normal direction, and
the wall roughness have visible influences on the interface shear resistance as well as
the deformation field formed within the layer. After large shearing, the width of the
localized zone along the wall does not necessarily depend on the normal confining
constraint and the applied pressure level. However, the localized zone characteris-
tics and the interface shear response are mainly affected by the initial void ratio of
the material. In addition to FE analyses, DEM-based simulations are also performed
to investigate the micro-mechanical response of granular medium adjacent to a wall
under shearing. FE predictions are qualitatively compared with DEM results, and
reasonable agreement is observed.
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1. Introduction

Measuring interface shear resistance of granular materials is in-
herently a boundary value problem [1, 2]. It is experimentally evident that the
boundary constraint imposed on the orientation normal to the common plane be-
tween soil medium and moving wall affects the interface behavior of soil-structure
system [2–4]. In engineering practice, the boundary conditions perpendicular to
the interface plane are originated from the stiffness of neighboring material (e.g.,
soil, rock, or structure) and can have multiple types from free to full constraint
of dilatancy [1, 10, 11, 15]. The confinement of adjoining material can change the
normal stresses applied on the wall surface, and accordingly, control the shear
resistance along the interface. Herein, the normal stiffness is characterized by
the ratio of normal stress variation to normal displacement variation (i.e., di-
lation or contraction) at the upper boundary of the granular layer. According
to Fig. 1(a, b), it varies between zero and infinity in the interfaces under con-
stant normal pressure (CP) and constant volume (CV) conditions, respectively.
The former describes the condition that the normal pressure is constant during
shear, and the granular body dilates or contracts freely, Fig. 1(a). However, no
vertical movement is permitted at the upper boundary of the granular body in
the latter condition, Fig. 1(b). This implies that a volume change is completely
prevented in CV condition. For this reason, CV is also denoted as the constant
height [3, 16]. During CV condition, the normal stresses at the interface increase
or decrease based on the tendency of a granular material to dilate or contract.
It is shown in experiments that the results of CP and CV interface shear tests
are different in the context of volume change and mobilized stresses along the
interface [6, 14]. They are recognized as the extreme direct interface shear paths
[5, 6, 17].

The practical examples of interface shearing of soil under CV condition can
be found in the vicinity of displacement piles, soil nails and ground anchors
under driving and axial loading [5, 6, 12, 18, 19] or near pre-stressed reinforced
soil structures [12, 20, 21].

Running truly CV interface shear test in the laboratory is rather difficult, as
little volume change is frequently observed in the specimen due to the limited
rigidity of reaction frame in the testing device against the specimen heaving and
expansion. Subsequently, the changes in normal stresses applied to the interface
during the CV shear test cannot easily be obtained [12]. Furthermore, the resid-
ual interface shear resistance can be measured when the specimen is subjected
to large and preferably unlimited shear displacement [4, 6, 9–11]. However, most
laboratory works have been carried out at small to moderate strains and do not
allow a sufficient amount of continuous shearing to attain a residual state. In
addition to all the above deficiencies, most previous experimental studies have
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Fig. 1. Plane interface shearing of an infinite granular soil layer under: (a) constant pressure
(CP) and free dilatancy, and (b) constant volume (CV) and constrained dilatancy;

(c) kinematics and static quantities of Cosserat material under plane strain condition;
kinematics along (d) rough and medium rough (0 < rw/d50 < 1), and (e) relatively smooth

(rw/d50 ≈ 0) walls.

mainly focused on exploring and measuring macro-scale quantities influencing
peak and steady-state strength along the granular-continuum interfaces. They
have not produced micro-scale information interior to the granular soil speci-
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mens due to difficulties in quantifying and collecting microscopic data, at the
scale of soil grains. Due to limitations, complexities, and difficulties related to
performing CV interface shear tests in laboratory, numerical modeling at micro-
level can be an efficient tool to more accurately explore the shear behavior of
granular materials at interfaces under CV condition.

A limited number of experimental and numerical investigations has been
carried out to study the shearing of granular bodies along interfaces under CV
condition [1, 4–6, 8, 10–18, 20–27]. Except [1, 15, 25], the other mentioned nu-
merical investigations have been performed within the framework of the classical
continuum. Consequently, they cannot appropriately scale the width of the local-
ized shear zone along the wall, as they have no intrinsic length scale within their
formulations [5, 6, 16, 27, 28]. Moreover, the dilatancy constraint of neighboring
material, which results in the changes of interface stresses, cannot also be con-
sidered realistically by the above classical interface models [29]. Accordingly, the
mobilized interface shear strength, and the strain gradients are not calculated
properly.

In the present investigation, monotonous plane shearing of an infinitely long
and thin layer of a granular Cosserat material in contact with a rigid horizontal
wall is analyzed. The granular material is sheared under CP and CV conditions.
The analyses are conducted with FEM and an elasto-plastic Cosserat soil model.
In particular, the Lade’s single hardening Cosserat model is used to describe
the mechanical properties of rate-independent cohesionless soil. The interaction
between the granular medium and the neighboring wall is taken into account
by sliding and rotating resistances of the boundary particles at the moving wall
surface. The main emphasis is given to the combined effects of normal confining
constraint, wall roughness, pressure level and initial void ratio on the variation
of mobilized shear resistance as well as the characteristics of the localized shear
zone along the wall. The obtained results of CV interface shearing are a basis to
be compared with those of CP at the micro-scale level, and their differences and
similarities are highlighted and discussed in the paper. The particle abrasion and
crushing are not considered in the simulations conducted in the present study.
This assumption can be physically and intuitively correct for stiff to very stiff
particles under low to moderate stress levels (e.g., p0 ≤ 1.0MPa).

Complementary DEM-based simulations are also conducted in the present
study to verify the Cosserat FE results. The qualitative verification is represented
in terms of distribution and evolution of field variables and state quantities within
the particulate medium. Accordingly, the microscopic and macroscopic responses
of the granular body under shearing are given.

The article is organized as follows: Section 1: presenting introduction; Sec-
tion 2: reviewing constitutive formulations and governing equations; Section 3:
giving information about FE modeling procedure, mesh discretization, and em-
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ployed boundary constraints; Section 4: showing FE and DEM results and the
relevant discussions; Section 5: offering conclusions.

2. Description of constitutive relations

The Cosserat theory preserves the well-posedness of the FE solutions in the
post-bifurcation phase and provides mesh-independent results. The Cosserat con-
tinuum can detect the localized shear zones in the softening regime by main-
taining the ellipticity of partial differential equations. So far, several Cosserat
continuum models have been developed within the frame of elasto-plasticity [16,
30–37] and hypoplasticity [1, 16, 38–43] to study the interface behavior of gran-
ular materials when shear localization appears. However, some of the developed
elasto-plastic Cosserat models have employed the stress limit conditions such
as Von Mises, Drucker–Prager, and Mohr-Coulomb plasticity laws, which are
not adequately capable to describe the real behavior of granular materials ob-
served in experiments [30–34]. Regarding the above limitation, a more advanced
elasto-plastic Cosserat constitutive model, which best fits the actual mechanical
behavior of granular materials, should be used to accurately obtain the interface
shear response of the granular body in touch with a bounding wall under motion.

For this purpose, the classical Lade’s model given for cohesionless granular
soils [44–47] is enriched to incorporate the micro-mechanical parameters includ-
ing micro-rotation and couple stress through the Cosserat theory [35–37, 48, 49].
Herein, only an overview of Lade’s constitutive relations along with Cosserat
couple stresses and rotations is provided to make this article self-contained. Com-
plementary information can be obtained from [35–37, 48, 49].

The elastic soil response is determined based on Hook’s law [44]. The elastic
modulus, E, is expressed by the conservation of energy. It varies non-linearly
with the stress invariants as

(2.1) E = MPa[(II/Pa)
2 + (6(1 + υ)/(1− 2υ))(J ′2/P

2
a )]λ,

where υ is the constant Poisson’s ratio; II is the first invariant of stress tensor;
J ′2 is the second invariant of deviatoric stress tensor; and Pa is the atmospheric
pressure with similar units as in E, II and J ′2. The dimensionless elastic con-
stants (M , λ, and υ) are defined from the unloading-reloading paths of triaxial
compression experiments [44].

The failure criterion is described in principal stress space by the first and the
third invariants of the Cauchy stress tensor as

(2.2) fn = (I3
I /IIII − 27)(II/Pa)

m,

where fn is equal to η1 at failure. This means that the present stress condition
meets the peak state. The constants η1 and m are dimensionless model parame-
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ters that may be defined from the magnitudes of the deviatoric stress at failure
in triaxial shear experiments. In the theory of plasticity, the plastic strain incre-
ment is given through the flow rule as ε̇Pij = λ̇p∂gp/∂σij , in which λ̇p is a positive
proportionality factor; σij is the stress tensor, and gp is the plastic potential
function, developed based on experimental data [45], and given by

(2.3) gp = (ψ1I
3
I /IIII − I2

I /III + ψ2)(II/Pa)
µ,

where III and IIII are the second and third invariants of the stress tensor,
respectively; ψ2 and µ are the model constants that are specified from triax-
ial experiment results [47]; ψ1 (= 0.00155m−1.27) is a constant associated with
the curvature of the failure surface, m, as proposed in [45].

The yield criterion depends on the stress as well as the plastic work and can
be expressed as

(2.4) fP (σij ,WP ) = f ′P (II , III , IIII )− f ′′P (WP ) = 0,

where

(2.5) f ′P = (ψ1I
3
I /IIII − I2

I /III )(II/Pa)
heq.

The parameter h is specified when the plastic work is constant along a yield
surface. The constant q changes with the pressure S by q = αS/(1− (1− α)S)
in which α is a parameter that can be defined by the best fitting of q with the
results of triaxial shear experiments [45]. The pressure amount, S, changes from
zero at hydrostatic stress to unity at failure (i.e., fn = η1) and is determined by
S = fn/η1 = 1/η1(I3

I /IIII − 27)(II/Pa)
m.

Hardening takes place when the yield function is isotropically enlarged, and
the plastic work grows by

(2.6) f ′′P = (1/D)(1/ρ)(WP /Pa)
(1/ρ),

where ρ = P/h and D = C/(27ψ1+3)ρ are material parameters. The parameters
C and P can be estimated by the best fitting of Eq. (2.7) with the results of
isotropic compression tests:

(2.7) WP = CPa(II/Pa)
P .

In the softening regime, the yield function shrinks isotropically via

(2.8) f ′′P = Ae−B(WP /Pa).

The constants

A = (f ′′P e
(BWP /Pa))S=1 and B = (b(df ′′P /d(WP /Pa))(1/f

′′
P ))S=1
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are determined from the magnitude of f ′′P and the slope of the hardening curve
at the peak point where S = 1. The constant b changes from zero to unity
(0 ≤ b ≤ 1.0). The material has a perfectly plastic behavior when b = 0.

The Green or the Lagrangian strain tensor, Eij , for the classical continuum
is separated into linear and non-linear parts as

(2.9) Eij = eij + ηij = (ui,j + uj,i)/2 + (uk,iuk,j)/2.

The quantity ui,j is defined as the displacement field derivative concerning the
current position. The Cosserat continuum consists of particles that can deform
in translation and rotation depending on the interaction between an individual
particle and its neighbors. The spin or the rotation of particle is determined
by ωci which shows the Cosserat or material point rotation [50]. The objective or
Cosserat strain rate tensor is defined by

(2.10) γ̇ij = Ėij + (Ω̇ij − Ω̇c
ij).

Equation (2.10) represents two types of spin tensors [51], which are the clas-
sical and Cosserat spins and determined by

Ω̇ij = 1/2(νi,j − νj,i),(2.11)
Ωc
ij = −eijkωck,(2.12)

where eijk is the Ricci permutation symbol. The classical spin represents the rigid
body rotation or environmental rotation of a material element resulting from the
macro-motion. Generally, the Cosserat strain rate tensor, given in Eq. (2.10),
generates asymmetry in the stress tensor [52]. In the particular case, when the
Cosserat rotation is the same as the environmental rotation, the symmetric strain
rate tensor for the classical continuum will be obtained. The micro-curvature
vector of deformation or the gradient of Cosserat rotation is described by

(2.13) κij = ωcj,i.

In the Cosserat continuum, static quantities are the Cauchy stress tensor, σij ,
and the couple stress tensor, M , which are determined concerning the current
configuration of a continuum body. Considering the effects of couple stresses, the
equilibrium equations in the Cosserat continuum are expressed by

σij,j + bi = 0,(2.14)
Mij,j − εijkσjk + ci = 0,(2.15)

where b and c are the body force and the body couple per unit volume, respec-
tively. Routinely, c is neglected in granular bodies. In general, the stress tensor
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is asymmetric in the Cosserat continuum due to the presence of couple stresses
(i.e., εijkσjk 6= 0), except for the conditions where Mij,j = 0 and ci = 0 [41, 48].

The equilibrium condition for a Cosserat body with volume V is written in
the weak form as

(2.16)
∫
V

[δu̇iσij,j + δu̇iρbi + δω̇ckMkj,j − δω̇ckεkijσij + δω̇ckρck] dV = 0,

where ρ denotes the spatial mass density. The velocity components, u̇i, and
the Cosserat angular velocity, ω̇ck, are independent of the static quantities. By
applying Gaussian integration, the following equation can be obtained:

(2.17)
∫
V

[δu̇i ρ bi + δω̇ck ρ ck] dV+

∫
S

[δu̇i σij nj + δω̇ckMkj nj ] dS

−
∫
V

[δω̇ckεkijσij + (δu̇i),jσij + (δω̇ck),jMkj ] dV = 0,

where ti = σijnj is the surface traction; mk = Mkjnj is the surface couple; and
nj is the outward normal unit vector prescribed on the boundary surface, S.
With Eq. (2.17), the boundary conditions can better be understood. Besides
the stress and displacement boundary constraints of a conventional continuum
(ti or ui), extra non-standard Cosserat kinematical boundary constraints, i.e.
micro-rotation or surface couple (mk or ω̇ck) must be prescribed on the boundaries
of a Cosserat continuum body.

Lade’s model has been developed based on the stress invariants and it needs
all three invariants to update all field quantities. The second invariants of stress
and deviatoric stress tensors are rewritten in the Cosserat continuum to incor-
porate the couple stress effects as

III = h1(σ12σ21 − σ11σ22 − σ11σ33 − σ22σ33)− h2m1m2/l
2,(2.18)

J ′2 = h3{[(σ11 − σ22)2 + (σ33 − σ22)2 + (σ11 − σ33)2](2.19)

+ ((σ12 + σ21)/2)2}+ h4(m2
1 +m2

2)/l2,

where mi are the couple stress components (m1 = M31, m2 = M32); and l
(= the mean particle size, d50) is the intrinsic length scale. Vardoulakis and
Sulem (1995) applied the same technique to adjust the stress invariants [33].

In the plane strain Cosserat continuum, the stress and strain tensors are
given in the following vector forms as

{σ} = {σ11 σ22 σ33 σ12 σ21 m1/l m2/l}T ,(2.20)

{γ} = {γ11 γ22 γ33 γ12 γ21 lκ1 lκ2}T ,(2.21)
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where κi are the micro-curvature components (κ1 = κ31, κ2 = κ32). It is preferred
to use time rates for stress and strain as

(2.22) {σ̇} = [D]{γ̇},

where [D] is the elasto-plastic stiffness matrix developed in the Cosserat contin-
uum [35, 48].

The classical Lade’s model involves 11 constants that can be specified by
one isotropic compression test with unloading-reloading paths and three triaxial
shear tests [35, 45–48]. The constants are related to non-linear elasticity (ML, λ
and υ), material hardening and softening (C and P ), failure criterion (η1, m),
yield function (α, h), and plastic potential function (ψ2 and µ). These constants
are determined analogously in both Cosserat, and classical versions of the model
[45–47] as the Cosserat effects are not initiated in co-axial and homogeneous
deformations with zero couple stresses. However, the Lade’s Cosserat model has
five additional constants, including the four weighing factors (h1 to h4) which
are employed to enrich the stress invariants presented in Eqs. (2.18) and (2.19)
and the average particle size (d50 = 1 mm). The model properly relates the
intrinsic length scale to d50 [33, 58, 59], which is predicted from the particle size
distribution. The weighing parameters (h1 to h4) are determined based on the
contact distribution of particles [35, 53, 54]. These parameters are assumed to
be equal to one in the current study, as recommended by [33]. The calibration
procedure of the model constants is briefly explained in the following, and the
details have been presented in [35, 45–48].

Non-linear elasticity constants (ML, λ and υ): these constants generate elas-
tic strains due to the variation of stresses. According to Hooke’s law, the non-
linear elastic modulus, E, can be determined via the unloading-reloading paths
in triaxial shear experiment. Poisson’s ratio is computed using the primary slope
of the volume change curve through υ = −(∆ε3/∆ε1) = (1 − (∆εv/∆ε1))/2.
Whenever the Poisson’s ratio was determined, Eq. (2.1) is rewritten to calculate
ML and λ via log(E/Pa) = logML+λ log[(II/Pa)

2+(6(1+υ)/(1−2υ))(J ′2/P
2
a )].

To this end, [(II/Pa)
2 + (6(1 + υ)/(1− 2υ))J ′2/P

2
a ] is plotted against (E/Pa) on

a log-log scale. The intersection of the best-fitting line passing through the labo-
ratory results with a vertical axis of log[(II/Pa)

2 +(6(1+υ)/(1−2υ))J ′2/P
2
a ] = 1

is equal to ML, and the slope of this line is equal to λ. As a minimum, three
triaxial shear experiments with varied confining stresses are needed to properly
draw the best-fitting line.

Material hardening and softening constants (C and P ): in order to predict
these constants, (WP /Pa) is plotted against (II/Pa) on a log-log scale. C is
defined by the intersection of the best-fitting line passing through the laboratory
results with a vertical axis of log(II/Pa) = 1, and P is the slope of this line.



430 B. Ebrahimian, M. I. Alsaleh, A. Kahbasi

Failure criterion constants (η1,m): the failure criterion can be rewritten
as log((I3

I /IIII ) − 27) = log η1 + m(Pa/II). Then, (Pa/II) is plotted against
((I3

I /IIII )− 27) at failure on a log-log scale. The intersection of the best-fitting
line passing through the laboratory results with a vertical axis of log(Pa/II) = 1,
is η1, and the slope of this line is equal to m.

Yield function constants (α, h): the plastic work is unique along the yield
surface, and subsequently, the driving stress is also unique. If two stress paths
are taken into account, OA along the hydrostatic axis, and OB along an arbitrary
stress path on the failure surface, then f ′PA = f ′PB occurs, and h is determined by

h = (ln((ψ1(I3
IB/IIII B )− (I2

I B/III B))e/(27ψ1 + 2))/ ln(II A/II B))

in which e is the base of the natural logarithm. All the above predicted constants
are then used to determine the stress level parameter:

q = ln(((WP /(DPa))
1/ρ)/((ψ1(I3

I /IIII )− (I2
I /III))(II/P )h))).

Subsequently, the experimental data set is applied to plot S against q to obtain α.
Plastic potential function constants (ψ2 and µ): in order to define these con-

stants,

ξx = (1/(1 + υ))((I3
I /I

2
II)(σ1 + σ3 + 2υσ3) + ψ1(I4

I /I
2
III )(σ1σ3 + υσ2

3))

− 3ψ1(I3
I /IIII ) + 2(I2

I /III )

and
ξy = ψ1(I3

I /IIII )− (I2
I /III )

are calculated at failure for a particular experimental data set; afterward ξy is
plotted against ξx on an arithmetic scale. The data set can be best fitted by
a line with the slope of 1/µ. The intersection of this line with the vertical axis
is −ψ2. As a minimum, three triaxial shear experiments with varying confining
stresses are needed to properly draw the line.

The constitutive constants used in the numerical simulations of the present
study are those measured for a medium dense fine silica sand [35, 48] and shown
in Table 1.

Table 1. Lade’s model parameters for fine silica sand.

Description Lade’s model parameters Value
Elastic properties ML, λ, υ 292.6, 0.25, 0.13
Failure criterion m, η1 0.37, 84.1
Plastic potential µ, ψ2 2.2, −3.06
Yield criterion h, α 0.95, 0.3
Hardening/softening law C, P 7e-5, 2.6, 1.0
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Lade’s model enhanced with Cosserat quantities has been implemented into
a non-linear FE program [55]. Due to space limitations, only the essential com-
ponents of the model have been presented here. The numerical implementation
aspects have already been discussed in detail by [35–37, 49]. The enhanced Lade’s
Cosserat model has successfully been employed in simulating biaxial compres-
sion test [49, 56], reinforced soil structures [57], pull-out behavior of geogrid
[58, 59], shear behavior of granular body [60–62], and interface behavior of gran-
ular medium [35–37]. In the mentioned investigations, the numerical results have
been confirmed by experimental observations.

3. FE modelling of interface shearing

In the current research, the interface behavior of an infinitely long cohesion-
less granular soil layer sheared against a bottom wall of varying surface roughness
is studied under constant normal pressure (CP) and constant volume (CV) con-
ditions, Fig. 1(a, b). The layer is discretized by four-node Cosserat elements with
a size of 1.25 mm × 1.25 mm. The element size is small enough and lower than
5×d50 (with d50 = 1 mm) to obtain mesh independent results [38]. To define the
translational and rotational degrees of freedom in the two-dimensional (2D) ele-
ment, a quadrilateral four-node isoparametric element with bi-linear shape func-
tions and four integration points is employed [35–37, 49]. According to Fig. 1,
numerical calculations are performed for a medium dense granular soil layer
with b = width = 10 cm and h0 = initial height = 4 cm. For the base case,
e0 = initial void ratio = 0.6 and p0 = initial isotropic pressure = 100 kPa are
assumed.

Regarding the interaction process between granular medium and neighbor-
ing wall, boundary particles may trap within the asperities of the wall’s surface.
Hence, neither particle sliding nor particle rolling may occur along the interface.
Consequently, the relative displacement and the micro-rotation at the lower sur-
face of granular medium is negligible [35, 59–63]. However, simultaneous shear
and slip of the materials occur along rough, medium rough and relatively smooth
surfaces and under quasi-static processes. The absence of particle sliding and
rolling adjacent to very rough walls was verified in silo model tests with coins
and Couette shear tests with steel rods [1, 15, 64]. Accordingly, the below rela-
tions are derived based on an elasto-plastic Cosserat continuum to realistically
simulate a wide range of wall asperities from rough to smooth conditions (Fig. 1):

(i) Boundary particles of the granular medium are in permanent contact with
the neighboring wall. Therefore, the relative displacement of boundary particles
in the direction normal to the wall surface, u2r, is zero, i.e.:

(3.1) u2r = U2B − u2p = 0.
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(ii) The tangential displacement of the first layer of boundary particles in the
direction of shear movement, u1P , is equal to or less than the displacement of
wall boundary, U1B, i.e.:

(3.2) u1p = fuU1B.

The dimensionless parameter 0 ≤ fu ≤ 1 represents a portion of U1B that is
transferred to the boundary particles of the granular medium.

(iii) The relative displacement, u1r, between the boundary surfaces of two
bodies reads:

(3.3) u1r = U1B − u1p = (1− fu)U1B,

u1r can also be denoted as the sum of the fraction due to particle sliding, u1rs,
and the fraction due to particle rotation, u1rr, i.e.:

u1rs = fsU1B,(3.4)
u1rr = frU1B,(3.5)
u1r = u1rs + u1rr = (fs + fr)U1B.(3.6)

Here, fs and fr represent the portions of U1B that are transferred by sliding
and rotating, respectively. A comparison between Eqs. (3.3) and (3.6) yields the
following relation:

(3.7) fu + fr + fs = 1.

Equation (3.7) includes the following extreme conditions:
(a) No rolling: fr = 0, so that fs = 1− fu and u1r = u1rs = (1− fu)U1B.
(b) Neither sliding nor rolling: fr = fs = 0, so that fu = 1 and no relative

displacement occurs: u1r = 0.
(c) Pure rolling: fs = 0, so that fu + fr = 1.
(iv) The following relation is proposed between the micro-rotation at the

boundary of granular medium, ωcp, the mean particle size, d50, the parameter fr,
and the displacement U1B, [36, 37]:

(3.8) ωcp = fr(U1B/(d50/2)),

ωcp is also given by the boundary particle displacement at the bottom of the
granular medium, u1p, i.e.:

(3.9) ωcp = (fr/fu)(u1p/(d50/2))

or by the relative displacement, u1r, i.e.:

(3.10) ωcp = (fr/(1− fu))(ur/(d50/2)).



Comparative FE-studies of interface behavior of granular. . . 433

(v) Regarding Eq. (3.10), correlation (3.11) for ωcp is also expressed by the
particle displacement at the wall surface, u1P , i.e.:

(3.11) ωcp = fw(u1p/d50)

with fw = 2fr/fu. The proportionality coefficient, fw, depends on the inter-
action between particles at the bottom boundary of the granular medium and
adjoining wall. In general, factors fr, fs, fu, and fw changes with variation of
field variables in the granular medium in a more complicated manner [29, 41].
For the purpose of simplification, however, these factors are assumed to be con-
stant in the current investigation. fw has empirically been related to the relative
roughness of the bottom wall’s surface by fw = F (rw/d50), in which F is the
so-called interface function [15, 35, 36, 43]. The proportionality coefficient, fw,
denotes u1P fraction, transmitted to particles via rotation. Thus, a lower value
for fw corresponds to smaller particle rotation at the wall’s surface represent-
ing a rough surface condition. According to Uesugi et al. [65], the roughness
of boundary can be characterized by the height of the surface asperities, rw,
measured on a representative area. Here, a relatively smoother wall corresponds
to a higher fw value and vice versa. This implies that fw has an inverse rela-
tionship with wall roughness (rw). Smooth walls are identified when the bound-
ary particles are large enough relative to any surface asperities, Fig. 1(d, e).
The coefficient, fw, can be measured from the wall friction experiments taking
into account the effects of wall roughness, rw, and average particle size, d50, of
the granular materials [1, 15, 43, 64, 66]. Additionally, fw and Cosserat bound-
ary conditions can also be verified by 3D DEM simulations with non-spherical
particles [67, 68].

Two special extreme cases of shearing under CP and CV confining constraints
are simulated using FEM, Fig. 1(a,b). Both cases can impose infinite shearing
condition on the soil-wall interface. The boundary constraints of the soil body
under CP shearing are:

(3.12)
u1(x1, 0) = U1B, u2(x1, 0) = 0, ωc3(x1, 0) = ωcp(x1, 0) = −fwU1B/l,

u1(x1, h) = 0, σ22(x1, h) = −p0 = −100 kPa, ωc3(x1, h) = ωcp(x1, h) = 0.

While the boundary conditions of the soil body subjected to CV shearing
are:

(3.13)
u1(x1, 0) = U1B, u2(x1, 0) = 0, ωc3(x1, 0) = ωcp(x1, 0) = −fwU1B/l,

u1(x1, h) = 0, u2(x1, h) = 0, ωc3(x1, h) = ωcp(x1, h) = 0.

Herein, h represents the thickness of soil layer; h� d50 is taken into account
and, consequently, the upper boundary of the layer has a negligible effect on
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developing the wall shear zone. In the considered normal boundary conditions,
Cosserat rotations are constrained at the upper boundary of the layer, while
a specific coupling is prescribed between the shear movement of the bounding
wall and the corresponding Cosserat or micro-rotation at the lower boundary of
the layer. Here, a very rough surface condition has been assumed along the up-
per boundary of the granular layer via locked Cosserat rotations [35, 40, 41, 63].
However, a proportional kinematic relation between the applied shear displace-
ment and the corresponding Cosserat rotation at the top boundary, can also be
taken into account to describe rough, medium rough, or relatively smooth sur-
faces, as in [36]. In fact, the assumption of locked Cosserat rotations along the
top surface of the layer indicates only a special distribution of shear stresses and
void ratios close to this area. Other kinds of distributions can also be considered
at the upper boundary by introducing different roughness conditions via various
degrees of constraints of Cosserat rotations.

In CP condition, the upper boundary of the layer (x2 = h) is only restricted
in the horizontal orientation not to happen sliding and rotating, while the layer
is free in the vertical direction. Thus, the vertical displacement is produced due
to the dilatancy or contractancy of the entire layer, and a normal stress (p0) is
constantly imposed on the upper boundary. Therefore, the layer height is not
fixed and can vary in the course of shearing. While in CV condition, the upper
boundary of soil layer (x2 = h) is restricted in both horizontal and vertical
orientations. Along the lower surface of the layer (x2 = 0), the vertical movement
(u2) is restricted in both CP and CV conditions, and the applied shear movement
is equal for the bottom wall (U1B) and the lower boundary of the soil layer (u1B).
This means that the relative shear movement along the interface, caused by
the lower skin frictions, is not taken into account [69, 70]. The wall movement,
U1B, is transferred to the soil body by the surface roughness. A large shear
movement is initiated by moving the bottom surface nodes of the soil layer
horizontally (U1B = u1B). Since the behavior assumed for the granular soil is
rate-independent, the considered time step can be related, for example, to the
displacement increment. The numerical simulations are carried out in an updated
Lagrange frame, which is efficient for dealing with large deformations and strain
localization in the material.

In a Cartesian reference system and for 2D condition, the kinematic variables
are displacements (u1 and u2) and micro-rotation (the Cosserat rotation, ωc3),
and the non-zero static variables are stress components (σ11, σ22, σ33, σ12, σ21)
and couple stress components (m1, m2), Fig. 1(c).

For simulation of an infinitely long and thin granular layer, the discretization
of a limited profile with finite elements is only needed, assuming the primary
condition of the soil medium is uniform [39]. The symmetry condition of the
infinite granular layer is provided by imposing appropriate restrictions to the
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lateral boundaries of the layer, i.e., each node on the left boundary is constrained
to the corresponding node on the right boundary to have similar displacements
and micro-rotation. So that the numerical results do not depend on the horizontal
coordinate and the length of the FE mesh [39]. Consequently, γ11 =γ33 =κ31 =0,
and the non-zero components of objective strain rate and micro-curvature rate
tensors are:

(3.14)
γ̇22 = ∂u̇2/∂x2, γ̇12 = ∂u̇1/∂x2 + ω̇c3 = ω̇c3 − 2ω̇3,

γ̇21 = −ω̇c3, κ̇32 = ∂ω̇c3/∂x2.

Herein, ω̇3 = −(∂u̇1/∂x2)/2 represents the environmental angular velocity
from macro-motion. Due to the lack of body force, body couple and inertia
forces, the equilibrium equations in the plane strain condition for the infinite
shear layer yield:

(3.15) ∂σ12/∂x2 = 0, ∂σ22/∂x2 = 0, ∂M32/∂x2 − (σ12 − σ21) = 0.

The rate forms of equilibrium equations then read:
(3.16)
∂σ̇12/∂x2 = 0, ∂σ̇22/∂x2 = 0, ∂Ṁ32/∂x2 −DR

22(σ12 − σ21)− (σ̇12 − σ̇21) = 0.

This means that the stress components σ12 and σ22 are constant across the
granular layer height; and the difference of two shear stress components is rel-
evant to the gradient of couple stress on horizontal planes. Accordingly, DR

22 is
the relative deformation rate tensor.

The infinite shear layer is modeled as an elasto-plastic Cosserat material and
considered to be homogeneous and isotropic at the initial state, i.e.:

(3.17) (σij)t=0 = −p0δij , (mi)t=0 = 0, (e)t=0 = e0.

The above assumptions show that the shear and couple stresses are zero at
the initial state, i.e., σ12 = σ21 = M31 = M32 = 0. Hence, the time derivative of
shear and couple stresses coincide with their objective rates at the initial state:

(3.18) σ̇12 =
◦
σ12, σ̇21 =

◦
σ21, Ṁ31 =

◦
M31, Ṁ32 =

◦
M32.

In Section 4.1, the coupled influences of the normal confining condition and
the bounding wall roughness are examined on the shear response of a granular
Cosserat layer. Special emphasis is given to the development of strain localiza-
tion in the material. In addition, a parametric study is performed in Section 4.2
to evaluate the influences of pressure level (p0 = 100, 500, 1000 kPa) and ini-
tial void ratio (e0 = 0.60, 0.75, 0.90) on the interface response of the shear
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layer. In Section 4.3, complementary DEM-based simulations of interface shear-
ing are conducted to qualitatively verify the results of Cosserat FE analyses. It
is noteworthy that the lateral boundary conditions in DEM simulations of the
interface shear test are different from those of FE analyses of the infinite shear
layer. Consequently, DEM results are obtained at the mid-section of the granular
specimen far from the sidewalls to minimize the lateral boundary effects. In ad-
dition, for comparison purposes, particle crushing phenomenon is not taken into
account in DEM simulations similar to FE analyses. However, this phenomenon
will be dominant at higher pressure levels, and particularly in shearing under
CV condition.

4. Numerical results of interface shearing

4.1. The influences of normal confining constraint and wall roughness

The results of interface behavior of an initially homogeneous and isotropic
granular layer (e0 = 0.6) sheared under CP and CV normal confining conditions
are explained in relation to Figs. 2–11. In simulations, the surface roughness
magnitudes of the bottom wall are set as fw = 0.05, 0.10, 0.25, 0.50 representing
rough (fw = 0.05), medium rough (fw = 0.10, 0.25) and relatively smooth
(fw = 0.5) conditions. All figures are displayed for different values of normalized
shear movement of the bounding wall (U1B/h0 = 0.25, 1.00 and 2.00).

During different stages of wall movement, shear displacement, u1, gradually
develops within the soil layer under both normal boundary conditions, as plot-
ted in Figs. 2(a) and 3(a). According to the figures, further increase of wall
displacement, U1B, causes localization of shear deformations along the bottom
wall’s surface. It is revealed that the development of shear deformations out-
side the wall shear zone is more pronounced in CV condition compared to that
of CP condition. Although the additional horizontal displacements outside the
localized shear zone are nearly zero in the rough interfaces under CP condi-
tion (Fig. 2(aA, aB)), they are continuously developed in those of CV condition
(Fig. 3(aA, aB)).

For relatively smooth walls, e.g., fw = 0.5 displayed in Figs. 2(aD) and 3(aD),
minor deformation occurs within the granular medium. Accordingly, only the soil
particles adjacent to the interface are expected to contribute to the soil-wall in-
teraction, and the involvement of upper parts farther away from the interface is
negligible. In this regard, particle movements are limited to a narrow zone near
the bounding wall with a thickness of around one particle size, and they lessen
quickly with rising distance from the wall, Figs. 2(aD) and 3(aD). Particularly,
they are around zero in areas that are far away from the moving wall. Never-
theless, if the wall roughness increases, e.g., fw = 0.05, as shown in Figs. 2(aA)
and 3(aA), more soil particles in the granular layer, and not only those close to
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Fig. 2. Variation of (a) u1/h0, (b) u2/h0 and (c) e across X2/d50 at different U1B/h0 in CP
shearing for: (A) Case (1): f = 0.05, (B) Case (2): f = 0.10, (C) Case (3): f = 0.25 and

(D) Case (4): f = 0.5.

the wall, may be involved in the shearing process. In fact, a rough wall contains
many asperity valleys at the size of particle, which may trap boundary particles,
Figs. 2(aA) and 3(aA). This trapping effect cannot be achieved in smooth sur-
faces, and the wall movement can hardly be transferred to the granular layer,
Figs. 2(aD) and 3(aD). Hence, a very thin area near the wall is only affected by
shearing, developing a narrow wall shear zone.

Concerning Figs. 2(b) and 3(b), the vertical deformation, u2, varies non-
linearly across the layer height. The vertical deformation is related to the dilation
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Fig. 3. Variation of (a) u1/h0, (b) u2/h0 and (c) e across X2/d50 at different U1B/h0 in CV
shearing for: (A) Case (1): f = 0.05, (B) Case (2): f = 0.10, (C) Case (3): f = 0.25 and

(D) Case (4): f = 0.5.

of the thin zone of material being involved in the shearing process. The layer
height changes when it is sheared under the CP condition, as also presented
in Fig. 2(b). It is also seen in the figure that the soil volume expands as long
as the normalized shear movement of the adjacent wall becomes larger. The
vertical deformation profile above the wall shear zone in CP condition, which
is reflecting the progressive soil dilation, possesses no deformation gradient that
reveals the granular layer is uniformly traveling away from the wall. On the
contrary, the height of the shear layer is constant during CV shearing, Fig. 3(b).
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The lower boundary of the granular medium hinders vertical displacement in
both confining conditions because of the existence of a rigid wall. In the case
of negligible soil volume change in relatively smooth walls under CV condition,
e.g., fw = 0.5, dilation happens directly next to the wall and is proportionally
compensated by the contraction of the neighboring soil, Fig. 3(bD). As depicted
in Figs. 2(a, b) and 3(a, b), the shear deformations are inhomogeneous within the
granular Cosserat layer under both normal confining constraints from the start
of shearing.

The wall shear zone can be identified by a substantial increase of void ra-
tio (e). The distribution patterns of void ratio across the layer height are entirely
different for various wall roughness values, Figs. 2(c) and 3(c). For shearing un-
der CP, the soil volume enlarges due to substantial dilation in the wall shear
zone, Fig. 2(b, c). However, dilation in the shear zone causes compression in
the rest part of the granular body for shearing under CV, Fig. 3(b, c). Thus,
the requirement for constant volume is globally fulfilled, i.e., the integral of the
void ratio curve across the layer height remains constant. Dilation in the shear
zone accompanied by contraction in the other parts of the shear layer can be
observed from the distribution of void ratio, whereas the mean value of the void
ratio keeps constant, Fig. 3(c). The void ratio profile is non-linear across the
layer height, Figs. 2(c) and 3(c). Thus, an originally uniformly distributed void
ratio in the granular layer becomes heterogeneous in the course of shearing due
to localization, as already studied with more details, for example, in [41]. The
void ratio value does not nearly depend on the coordinate X2, except for the
limited zones near the top and bottom boundaries of the shear layer. The devia-
tion near the top is due to the Cosserat boundary constraints prescribed at the
upper boundary of the soil medium.

It is seen in Figs. 4(a) and 5(a) that the Cosserat or micro-rotation (ωc3)
is nearly constant across the layer height with the exception of the lower parts
close to the bottom surface. Significant particle rotations with dilatancy are seen
in the granular medium adjacent to the bottom wall with continuing displace-
ment in both CP and CV shearing, Figs. 2(c), 3(c), 4(a) and 5(a). They arise
spontaneously from the beginning of shearing.

Variation and magnitude of normalized couple stress, m∗2, depend signifi-
cantly on the normal confining constraint and wall roughness, Figs. 4(b) and 5(b);
m∗2 is non-uniformly distributed across the layer height. Regardless of the shear
displacement amount, the couple stress is zero in the middle of the wall shear
zone. It can be pointed out that the normalized couple stress, m∗2, is minimal
in CP condition (Fig. 4(b)), but it does not disappear in the granular medium.
According to Eq. (3.15), the normalized couple stress, m∗2, indicates the extrema
in the positions at which the normalized shear stresses, σ∗12 and σ∗21, are the
same, Figs. 6(b, c) and 7(b, c). The gradient of normalized couple stress, m∗2,
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Fig. 4. Variation of (a) ωc3, (b) m∗1,2 and (c) σ∗11, σ∗22 across X2/d50 at different U1B/h0 in
CP shearing for: (A) Case (1): f = 0.05, (B) Case (2): f = 0.10, (C) Case (3): f = 0.25 and

(D) Case (4): f = 0.5.

is relevant to the difference of normalized shear stresses, (σ∗12 − σ∗21). In spite
of the fact that no localization is identified close to the upper surface, normal-
ized couple stresses jump dramatically in this region, and the stress tensor is
asymmetric, Figs. 4(b) and 5(b). As previously explained, this difference is re-
lated to the Cosserat constraints prescribed at the upper boundary of the soil
medium.

Based on Figs. 6(a, b) and 7(a, b), uniform distribution of stress components
σ∗12 and σ∗22 are obtained as required for equilibrium given in Eqs. (2.15, 3.15,
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Fig. 5. Variation of (a) ωc3, (b) m∗1,2 and (c) σ∗11, σ∗33 across X2/d50 at different U1B/h0 in
CV shearing for: (A) Case (1): f = 0.05, (B) Case (2): f = 0.10, (C) Case (3): f = 0.25 and

(D) Case (4): f = 0.5.

and 3.16). However, the distribution of stresses σ∗11, σ∗33 and σ∗21 is strongly
non-linear across the wall shear zone, Figs. 4(c), 5(c), 6(a, c) and 7(c). A com-
parison between σ∗12 and σ∗21 demonstrates that the stress tensor is asymmetric
in the Cosserat continuum except for the conditions in which ∂m∗2/∂x2 = 0,
Figs. 6(a, b) and 7(a, b). The latter states occur at two positions with σ∗21 = σ∗12

which correspond to the extrema of m∗2. This can be distinguished by compar-
ing Fig. 4(b) with Fig. 6(b, c), and Fig. 5(b) with Fig. 7(b, c) for CP and CV
conditions, respectively.
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Fig. 6. Variation of (a) σ∗22, σ∗33, (b) σ∗12 and (c) σ∗21, across X2/d50 at different U1B/h0 in
CP shearing for: (A) Case (1): f = 0.05, (B) Case (2): f = 0.10, (C) Case (3): f = 0.25 and

(D) Case (4): f = 0.5.

Independent of the assumed Cosserat boundary conditions, the normal
stresses in the center of the wall shear zone approach to a similar stationary
state, which is acquired from the classical elasto-plastic Lade’s material under
shearing, i.e., σ∗11 = σ∗22 = σ∗33. Stresses and couple stresses are extrema at the
shear zone edges, and showing pronounced rises, Figs. 4(b, c), 5(b, c), 6(a, c)
and 7(c).

Wall roughness results in resistance mobilization and volume change inside
the wall shear zone in both confining constraints, Figs. 8 and 9. In CP condi-
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Fig. 7. Variation of (a) σ∗22, (b) σ∗12 and (c) σ∗21, across X2/d50 at different U1B/h0 in CV
shearing for: (A) Case (1): f = 0.05, (B) Case (2): f = 0.10, (C) Case (3): f = 0.25 and

(D) Case (4): f = 0.5.

tion, continuous dilation is observed, with the largest dilation rate happening
near the peak point and moving towards zero at the steady-state, Fig. 8(E). At
the steady condition, the soil is continually deforming at a constant shear stress
ratio and constant volume. In both normal confining constraints, the shear re-
sistance increases when wall roughness grows. Higher normal and shear stresses
are obtained for a lower interface coefficient (fw), as given in Figs. 8(A–D) and
9(A–D) related to CP and CV conditions, respectively.
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Fig. 8. Evolution of (A) σ∗12, σ∗21, (B) ϕm, (C) σ∗11, σ∗22, (D) σ∗22, σ∗33 and (E) e at different
X2/h0 in CP shearing for: (a) Case (1): f = 0.05, (b) Case (2): f = 0.10, (c) Case (3):

f = 0.25 and (d) Case (4): f = 0.5.

The rough walls exhibit higher strength compared to the smooth ones, which
is rational as the rough wall is more interlocked with the boundary particles and
thus causes more resistance to shear than the smooth wall, Figs. 8(A) and 9(A).
This fact is related to the amount of particle rearrangement that can happen. As
the rougher wall has greater surface friction, the particles adjacent to the wall
surface are not rearranged during continuous shearing as long as the shear stress
is not sufficiently large to prevail over the inter-granular soil friction. Limiting
particle rearrangement leads the interface to attain a steady condition at small
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Fig. 9. Evolution of (A) σ∗12, σ∗21, (B) ϕm, (C) σ∗11, σ∗22, (D) σ∗22, σ∗33 and (E) e at different
X2/h0 in CV shearing for: (a) Case (1): f = 0.05, (b) Case (2): f = 0.10, (c) Case (3):

f = 0.25 and (d) Case (4): f = 0.5.

deformation. Elastic perfect-plastic failure trend with negligible material dilation
happens along the smooth walls, while shear localization with significant strain-
softening and bulk dilatancy takes place along the rough walls, Figs. 8 and 9.

The evolution of frictional resistance at the bottom wall’s surface can be
defined by the stress ratio (σ∗12/σ

∗
22) or by the mobilized wall friction angle,

ϕm, expressed as ϕm = tan−1(σ∗12/σ
∗
22). As σ∗22 is constant across the layer

height, the variation curves for the wall friction angle are similar to those of the
bounding wall shear stress, σ∗12, Fig. 8(A,B). In CP condition, the mobilized
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wall friction angle, ϕm, also illustrates an increasing trend up to a peak value,
followed by subsequent post-peak strain-softening phase leading to a steady-
state at higher shear deformations, Fig. 8(B). The latter state is also called the
constant volume or critical state, and the corresponding friction angle is mostly
known as the constant volume friction angle. As shown in Figs. 8(B) and 9(B),
the mobilized peak wall friction angle is 25.43◦ and 23.08◦, 24.72◦ and 22.16◦,
21.77◦ and 19.58◦, 16.72◦ and 15.19◦ in CP and CV conditions, respectively,
for fw = 0.05, 0.10, 0.25 and 0.50, respectively. While, the mobilized residual
wall friction angle is 22.15◦ and 21.62◦, 21.73◦ and 21.26◦, 19.38◦ and 19.10◦,
14.95◦ and 14.83◦ in CP and CV conditions, respectively, for fw = 0.05, 0.10,
0.25 and 0.50, respectively. The constant volume friction angle represents the
lowest shear resistance of the material [28]. Similar to shearing under CP, the
asymptotical values of wall friction angle in CV shearing increase as fw decreases,
Fig. 9(B). Comparing the magnitudes of the wall friction angle obtained from CP
and CV shearing exhibits that, while more noticeable peaks are obtained for CP
condition, the rather same residual values are reached for the same coefficient fw
in both confining constraints. This implies that the peak values of the wall friction
angle are affected by the stress induced inside the soil body, but the residual
values do not depend on the stress level. These findings also suggest that the
wall roughness effect can be appropriately reflected by the boundary constraint
between the micro-rotation and the shear displacement with the coefficient fw,
as given in the relation (3.11).

Regarding the above values of wall friction angle, the mobilized peak and
residual values in fw = 0.05, 0.10, 0.25, and 0.50 decrease almost linearly as fw
increases. It has been shown that the mobilized wall friction angle changes in
the range of 0◦ to 26.5◦ with rising wall roughness [37]. The latter magnitude is
the internal friction angle of the medium dense fine silica sand. It is noteworthy
that the magnitudes of wall friction angles obtained for the selected materials are
smaller than those of typical ones [71, 72]. However, it should not be overlooked
that the above friction values have been obtained for a medium dense fine silica
sand in contact with rough, medium rough, and relatively smooth walls. On the
other hand, the peak and residual friction angles are also dependent on several
parameters such as stress level, size, shape, and surface roughness of particles,
initial density of granular material, surface roughness, and stiffness of bounding
structure.

The difference between the peak and the residual wall friction angles is around
3.28◦ and 1.46◦, 2.99◦ and 0.90◦, 2.39◦ and 0.48◦, 1.77◦ and 0.36◦ in CP and
CV conditions, respectively, for fw = 0.05, 0.10, 0.25, and 0.50, respectively.
This shows that the material softening rate decreases with fw increasing or
wall roughness decreasing. However, this rate is not severe for the range of wall
roughness considered.
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Figure 8(E) demonstrates the evolution of the void ratio at different levels
across the soil layer under CP shearing. The wall shear zone displays a pro-
nounced dilation after a primary compaction. On the contrary, the density of
granular material exterior to the wall shear zone ceases to vary after an initial
increase [14]. In the middle of the localized deformation zone, the volumetric
strain is compressive at the start of shearing, then well before the peak, the
layer begins dilating, while tending towards a constant value at large displace-
ment. However, the evolution curves of void ratio deviate from each other before
the peak stress is reached. Eventually, the dilation rate tends to zero, and the
void ratio-displacement curves will be nearly horizontal [14]. External to the wall
shear zone, the void ratio slightly increases and is almost steady for continuous
shearing. This indicates that for an advanced shearing, the soil material out-
side the wall shear zone behaves as a rigid body after the peak. The dilatancy
characteristics become larger with an increase in wall roughness, as indicated in
Fig. 8(E). The values of void ratio within the wall shear zone are about 0.84,
0.83, 0.82 and 0.81 for fw = 0.05, 0.10, 0.25 and 0.50, respectively. However,
the difference between these values is not severe with respect to the variation
of the wall roughness. Nevertheless, it should be emphasized that no relative
displacement occurs in the current FE simulations between the layer and the
moving wall [69]. Consequently, the granular body is entirely sheared against
the wall surface [31, 65, 73–75]. This means that no limitation on wall shear
strength is taken into account, which causes infinite shear deformations within
the granular body. In smooth walls, however, only a very limited narrow area
adjacent to the moving wall is influenced, and the contribution of the rest parts
of the layer is not significant. In such roughness conditions, the shear zone oc-
curs with extremely smaller width and more localization intensity comparing to
that of medium rough and rough walls. Accordingly, the polar variables, such
as increasing void ratios, Cosserat couple stresses and rotations are greater and
more pronounced close to smooth walls due to the very smaller shear zone width.
This also corresponds to the former numerical studies in this area [1, 43]. More-
over, the variation pattern of void ratio, shown in Figs. 2(c) and 8(E), is directly
dependent on the shear zone location as well as the position of the particular
elements considered across the layer height (x2/h0 = 0.00, 0.25, 0.50, 0.75, 1.00).
These elements are not necessarily located at the middle or edge of the localized
shear zone as their locations are changing with respect to the wall roughness and
the shearing mechanism.

For shearing under CV condition, the void ratio interior to the wall shear
zone rises first to a peak value, which is lower than the corresponding value in
CP condition, and then continually decreases as the applied shear displacement
increases, comparing Figs. 8(E) and 9(E). Nevertheless, the void ratio out of the
wall shear zone decreases continuously from the beginning of shearing, Fig. 9(E).
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The normal dilation at the critical state decreases with a decrease of normalized
roughness, rw/d50. As represented in Fig. 9(C,D), the difference between two
confining constraints may be related to the continuous increase of pressure in CV
condition resulting from localized dilation [14]. According to Figs. 8 and 9, under
a different normal confining condition, the granular layer will have a different
tendency of deformation, such as dilation and contraction, which affects the
variation of volume and normal stress [14].

The deformed soil layer with contour plot of void ratio in the residual state
(u1B = 2.00h0) and for different values of fw is presented in Figs. 10 and 11 for
CP and CV shearing, respectively. The shear deformations are horizontally local-
ized and in direct contact with the bottom wall. The red strip shows higher void
ratios due to material dilatancy in the wall shear zone. When the wall roughness

Fig. 10. Contour plot of void ratio in deformed configuration of granular soil layer after
U1B/h0 = 2.00 in CP shearing for: (a) Case (1): f = 0.05, (b) Case (2): f = 0.10,

(c) Case (3): f = 0.25 and (d) Case (4): f = 0.5.
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changes, it will strongly influence the mobilized shear resistance along the wall
surface and the localization behavior. The shear zone width becomes larger with
an increase of wall roughness. With a larger value for fw, which corresponds to
a higher ratio of micro-rotation to normalized shear movement along the wall,
showing a relatively smooth surface condition, a more significant localization
with a narrower width takes place. Conversely, a smaller value for fw, which cor-
responds to a relatively rough surface condition, leads to a less localization with
a larger thickness. In CP condition, the wall shear zone width predicted from
the developments of void ratio, is about 19, 14, 9 and 4 times the intrinsic length
scale for fw = 0.05, 0.10, 0.25 and 0.50, respectively. However, the shear defor-
mations occur in the entire section of the shear layer in touch with the rough
interface under CV condition, which is distinguished from the distribution of

Fig. 11. Contour plot of void ratio in deformed configuration of granular soil layer after
U1B/h0 = 2.00 in CV shearing for: (a) Case (1): f = 0.05, (b) Case (2): f = 0.10,

(c) Case (3): f = 0.25 and (d) Case (4): f = 0.5.
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the void ratio, Fig. 11(a). The localized deformations are more pronounced out
of the wall shear zone in CV condition compared to that of CP condition. In
particular, localization cannot be detected in the granular medium adjacent to
a moving rough wall (fw = 0.05) under CV condition up to a shear displacement
of U1B/h0 = 2.00, Fig. 11(a). As a result, the computed width of the wall shear
zone in CV condition is around 15, 10 and 5 times the intrinsic length scale for
fw = 0.10, 0.25 and 0.50, respectively. Although both factors of normal confining
constraint and bounding wall roughness have notable influences on the deforma-
tion field formed within the layer, they have rather negligible influences on the
evolution and location of the wall shear zone. In the majority of the considered
cases, the localized zone has almost similar width for both CP and CV interface
shearing with the same fw value. It is found that the width of the wall shear
zone is independent of the normal confining condition after applying large shear
deformations.

4.2. The influences of pressure level and initial void ratio

Here, the impacts of pressure level (p0) and initial void ratio (e0) are explored
on the variation of stress ratio (σ∗12/σ

∗
22) and the normalized width of the wall

shear zone (w/d50). For this purpose, different amounts of vertical pressure (p0 =
100, 500, 1000 kPa) and initial void ratio (e0 = 0.60, 0.75, 0.90) are taken into
account for a granular layer sheared against a bounding wall of varying surface
roughness (fw = 0, 0.05, 0.10, 0.25, 0.50, 1).

According to Fig. 12(aA, bA), larger pressures result in a smaller stress ra-
tio at both peak and residual states in CP interface shearing. Correspondingly,
softening is more evident at lower pressure levels. As previously discussed and
also shown in Fig. 12(aA, bA), the magnitudes of peak and residual stress ratios
significantly increase with a reduction of the interface coefficient, fw. In addition,
the normalized width of the wall shear zone slightly rises as the vertical pres-
sure increases, Fig. 12(cA). In this regard, the higher values of shear zone width
correspond to the lower values of fw. Comparing the 3D surfaces in Fig. 12, it
is revealed that the results of CP interface shearing under higher pressure levels
tend towards those of CV condition. It can be stated that the maximum values
of stress ratio increase with reducing the dilatancy constraint which is equal to
a decrease in the pressure level.

Under both CP and CV confining conditions, the peak and residual stress
ratios decrease when the initial void ratio increases, Fig. 12(aB, bB, aC, bC). It
is seen in Fig. 12(cB, cC) that the normalized width of the wall shear zone grows
with an increase of the initial void ratio. For very loose granular materials (i.e.,
e0 ≥ ec = 0.84), the shear zone width is equivalent to the height of the shear
layer (here, 40 × d50). This means that the shear zone width attains the size
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Fig. 12. Variation of (a) (σ∗12/σ
∗
22)Peak, (b) (σ∗12/σ

∗
22)Residual and (c) (w/d50) versus (A) p0

and fw and (B-C) e0 and fw in: (A-B) CP and (C) CV shearing.

of the granular medium in case the initial void ratio is equivalent to or greater
than its critical value, i.e., ec = 0.84. The extent of dilative response of granular
materials under shearing which is determined by an increase of the void ratio
grows with a decrease of both applied pressure level and initial void ratio.

4.3. DEM-based simulations

DEM, first proposed by Cundall (1979), is one of the efficient methods
to properly investigate the micro-mechanical behavior of granular media [76].
A number of DEM studies has been carried out to consider the interface shear
response of granular materials [19, 67, 68, 77–88].

In this section, the shear behavior of a granulate-continuum interface system
is examined from a micro-mechanical perspective, Fig. 13. To this end, DEM-
based simulations of the interface shear test under CP and CV conditions are
carried out using 3D particle flow code, PFC3D [89]. In this regard, the granular



452 B. Ebrahimian, M. I. Alsaleh, A. Kahbasi

Fig. 13. 3D DEM model of interface shearing: (a) schematic view of an interface shear test,
(b) an assembly of spherical particles forming granular specimen in contact with moving

bottom wall of varying surface roughness, and (c) rigid interface shear box composed of four
fixed sidewalls, one top wall moving in the z-direction and one bottom wall moving in the

negative x-direction.

specimen is created by an assembly of rigid spherical particles with different
sizes in the range of (0.5–1.5)mm and with an average size of d50 = 1.0mm. The
specimen has a length and width of 100mm and a height of 40mm (l× b×h0 =
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100 × 100 × 40 mm3), Fig. 13(a). About 55000 particles are produced to form
the specimen, which is placed within the interface shear box consisting of four
rigid sidewalls and bounded by upper and lower horizontal walls, as displayed in
Fig. 13(b, c). The normal pressure is exerted on the top surface of the specimen
via the upper wall, and the shear displacement is applied to the bottom surface
of the specimen by moving the lower wall. The surface roughness of the lower
wall is modeled by a regular arrangement of microscopic teeth. Each tooth is
configured by two side segments inclining alternatively 45◦ and 135◦ with respect
to the Z-axis, as schematically shown in Fig. 13(a). As previously presented in
Section 3, normalized or relative roughness, Rn = Rmax/d50, is utilized to specify
the roughness condition of the lower wall surface. Rmax is the vertical distance
from peak to valley of the asperities along the wall’s surface [65].

DEM simulations of the interface shear test are performed in three stages.
At first, the particles are randomly generated in the shear box to form a dense
specimen with an initial porosity of n0 = 0.32. At the second stage and for
shearing under CP condition, the normal load is imposed and maintained on
the upper wall, which moves uniformly in the vertical direction. In contrast,
the vertical movement of the upper wall is constrained at the second stage for
shearing under CV condition. Eventually, at the third stage, the lower wall moves
to the left at a constant horizontal velocity of 0.12mm/min to ultimately achieve
a shear movement of UXB = 12mm, while the shear box is fixed in space. The
ratio of mean unbalanced force to mean contact force is controlled to fulfill
a quasi-static interface shearing. Correspondingly, each time-step takes about
10−5 s during shear loading that guarantees a quasi-static condition.

DEM calculations are based on two rules: Newton’s second law, which applies
to particles, and the force-displacement law, which applies to particle contacts.
Here, the force-displacement relationship between particles follows the linear fric-
tional contact model with rotation resistance. In this model, contact forces vary
linearly with the relative displacement of particles in contact to prevent slipping.
Slippage happens when the contact forces reach the Coulomb failure limit. Cor-
respondingly, rotation causes a relative rotation between two particles in contact.
The contact moments increase linearly with the relative cumulative rotation at
particle contacts. In DEM analyses, the energy dissipation by the frictional slid-
ing is not sufficient to have a stable condition due to the dynamic formulation of
the model. Thus, additional dissipation is incorporated by using a local damping
factor of 0.7, as proposed in PFC3D for quasi-static problems [89]. The input
parameters of DEM simulations are listed in Table 2.

Here, the impacts of bottom wall roughness, pressure level, and normal con-
fining constraints are explored on the microscopic and macroscopic responses of
the granular specimen under shearing. In this regard, a series of DEM simula-
tions is carried out under CP and CV conditions with different values of wall
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Table 2. Input parameters used in DEM simulations.

Description DEM parameters Value
Number of particles 55000
Density (kg/m3) 2650
Mean particle diameter (mm) d50 1.00
Initial porosity n0 0.32
Inter-particle normal-to-shear stiffness ratio kn/kt 2.00
Inter–particle frictional coefficient fp 0.24
Particle–lateral walls frictional coefficient fpw 0.50
Particle–bottom wall frictional coefficient fpbw 0.01
Inter-particle rolling resistance coefficient µr 0.05
Damping coefficient 0.70

roughness (Rn = 0.0, 0.5, 1.0, and 2.0), indicating smooth, relatively smooth,
rough, and very rough walls. Moreover, different pressure levels (p0 = 100, 200,
500, 1000, and 1800 kPa) are applied at the second stage of each simulation.
For verification purposes, the values of the applied pressure level have been in-
creased to determine the pressure at which the CP results approach those of CV,
regardless of the grain crushing phenomenon.

Unlike the lateral infinite shear layer, the deformation and stress fields are
heterogeneous within the granular specimen due to the presence of the rigid side-
walls of the interface shear box. For this reason, DEM results and FE predictions
cannot be compared quantitatively, and instead, qualitative comparisons are pro-
vided. In order to minimize the influence of the lateral boundaries of the shear
box on the DEM results, the variation of field variables and state quantities are
recorded in the mid-section of the granular specimen farther away from the rigid
lateral boundaries.

Despite the fact that the granular medium is simulated by an assembly of
spherical particles in DEM, the field quantities can be computed in an aver-
age sense within the representative element volumes (REVs) called measuring
spheres. To this end, the center of each measuring sphere is assigned to a partic-
ular point in which the continuum field quantities are to be computed. Here, the
measuring sphere size is selected to be 5× d50. In the present study, the average
of stress components is computed over a measuring sphere based on the method
suggested in [90].

The variation of field quantities obtained from DEM simulations are pre-
sented across the normalized height (Z/d50) of the granular specimen under CP
and CV shearing conditions, as shown in Figs. 14–17. All figures are illustrated
for an applied wall displacement of 12mm (UXB/h0 = 0.30).

Particle movement can properly be traced in DEM simulation. According to
Figs. 14(a) and 15(a), the normalized horizontal displacement, ux/h0, is local-
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Fig. 14. Variation of (a) ux/h0, (b) uz/h0, (c) n and (d) ωp across Z/d50 in CP shearing
with different Rn values after UXB/h0 = 0.3 for: (A) p0 = 100 kPa, (B) p0 = 200 kPa,

(C) p0 = 500 kPa, (D) p0 = 1000 kPa and (E) p0 = 1800 kPa.

ized into a narrower zone near the bottom wall when its roughness increases.
The gradient of horizontal displacement in this zone decreases with decreasing
wall roughness. As observed in the figures, the particles closer to the moving
wall have larger horizontal displacements forming a wall shear zone. It is seen
in Figs. 14(aA,aB) and 15(aA,aB) that the horizontal displacement decreases
substantially with increasing distance from the bottom wall, especially in the
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Fig. 15. Variation of (a) ux/h0, (b) uz/h0, (c) n and (d) ωp across Z/d50 in CV shearing
with different Rn values after UXB/h0 = 0.3 for: (A) p0 = 100 kPa, (B) p0 = 200 kPa,

(C) p0 = 500 kPa, (D) p0 = 1000 kPa and (E) p0 = 1800 kPa.

cases under lower pressure levels (i.e., P0 = 100, and 200 kPa). In the mentioned
cases, the horizontal displacement approaches nearly zero at parts far from the
moving bottom wall. On the contrary, the progression of the horizontal displace-
ment outside the wall shear zone is more evident at higher pressure levels (i.e.,
P0 = 500, 1000, and 1800 kPa) due to more interaction of particles within the
specimen, Figs. 14(aC, aD, aE) and 15(aC, aD, aE). It is revealed by comparing
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Figs. 14(a) and 15(a) that the evolution of horizontal displacement farther from
the bottom wall is more significant in CV condition than that of CP condition.
This result was also certified previously in Figs. 2(a) and 3(a) relevant to the
Cosserat FE calculations.

The variation of vertical displacement, uz/h0, within the granular speci-
men can change considerably with respect to the wall roughness, Figs. 14(b)
and 15(b). When free dilatancy is allowed, as in the case of shearing under CP
condition, the granular specimen height can change in the vertical direction,
Z, due to dilatant or contractant behavior of the material, as also shown in
Fig. 14(b). The vertical deformations above the wall shear zone in the CP con-
dition, which illustrate the continuous material dilation, have a negligible dis-
placement gradient that confirms the granular specimen is monotonously moving
away from the bottom wall, such as a rigid body. Opposed to the CP shearing,
the height of the granular specimen under CV shearing is fixed, Fig. 15(b).
The above trend was similarly observed in the obtained FE results, shown in
Figs. 2(b) and 3(b).

The normalized displacement fields, ux/h0, and uz/h0, interior to the granu-
lar specimen, obtained from the current DEM approach, have non-linear trends,
similar to the Cosserat FE results, comparing Figs. 2(a, b) and 3(a, b) with
Figs. 14(a, b) and 15(a, b). The non-linear variation of the curves also demo-
strates the formation of a shear zone along the bottom wall’s surface. DEM
results show that the interface behavior is significantly affected by the wall rough-
ness, seen in the Cosserat FE simulations as well.

As a typical response of a densely packed granular assembly under CP shear-
ing, the dilation is observed inside the localized shear zone along the wall,
Fig. 14(c). However, dilatancy in the wall shear zone results in contractancy
in the remaining parts of the granular specimen under CV shearing, Fig. 15(c).
Therefore, the requirement for CV condition is satisfied within the whole
specimen.

Porosity possesses the most significant magnitudes inside the wall shear zone
for varying values of the wall roughness, Figs. 14(c) and 15(c). As shown in
the figures, the values of porosity outside the wall shear zone are much smaller
than its primary magnitude (n = 0.32) owing to the application of different
amounts of initial normal pressure. The presence of a relatively smooth wall
(i.e., Rn = 0.5) in touch with the granular specimen results in very low volume
changes. In this regard, volume increase does not effectively contribute to the
shear strength of the relatively smooth wall, even in dense granular bodies, as
observed in Figs. 14(c) and 15(c). This implies that the triggered shear stress
is not adequately large to affect a great portion of the granular specimen in
contact with a relatively smooth wall under motion due to the minimum in-
terlocking between the boundary particles and the wall’s surface. As the wall
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roughness increases, dilatancy and volume change of the granular body become
more evident, Figs. 14(c) and 15(c).

According to Figs. 14(d) and 15(d), non-linear variation of particle rotation,
ωp, with larger values at the lower surface of the granular medium close to the
moving wall is manifested in both CP and CV conditions after a large shear
movement of UXB/h0 = 0.30. The variations are in accordance with the dis-
tributions of particle displacement and volume change plotted in Figs. 14(a, c)
and 15(a, c). The maximum values of particle rotation, accompanied by dilatancy,
demonstrate where shear banding may be initiated under shearing. As the wall
roughness increases, particle rotation also increases inside the wall shear zone
and remains almost unchanged outside it, Figs. 14(d) and 15(d). The progres-
sion of particle rotation exterior to the wall shear zone almost ceases when the
shear displacement is concentrated.

Under both CP and CV shearing, the particle rotation in the wall shear zone
decreases for the relatively smooth wall (i.e., Rn = 0.5) as the applied pressure
level rises. In contrast, it increases with an increase of pressure level for higher
roughness values (i.e., Rn = 1.0, 2.0), as also seen in [67]. The reason for this
irregular variation may be attributed to the normal and tangential forces and
tangential moments acting on the inclined side segments of each tooth along the
wall surface [67]. When the bottom wall moves to the left, it creates a clock-
wise particle rotation. As the wall roughness increases, the tooth height rises,
and the interaction between the surface asperities and the boundary particles in-
creases. Due to the friction prescribed between the inclined side segments of each
tooth and the boundary particles, when the particles want to rotate and slide
along the side segments, frictional forces are created in the opposite direction
of their movement, which in turn leads to clockwise moments, which intensify
the previous clockwise rotation of each particle. Consequently, the particle ro-
tation increases in rougher walls (Rn = 1.0, 2.0) as the applied pressure level
grows.

One way to find the width of the wall shear zone is to calculate the threshold
limit of the curvature function for the mean particle displacement [82]. For this
purpose, a best-fitting curve that passes through the most points of the average
displacement versus height is determined and then the curvature function of the
obtained curve is computed. Jing et al. [82], suggested that the threshold of the
point of curvature is the height where the curvature function has a value equal
to 0.02. Thus, with reference to the horizontal displacement profiles indicated in
Figs. 14(a) and 15(a), the width of the wall shear zone formed in the vicinity
of the bottom wall is about 2.9d50, 7.0d50, and 7.2d50 for relatively smooth,
rough, and very rough surface conditions, respectively. Nevertheless, the effect
of pressure level on the width of the wall shear zone is not remarkable. It is worth
noting that this finding is reliable as long as the particle crushing is not taken
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Fig. 16. Evolution of (A) σ∗zx, (B) ϕm, (C) n and (D) εv across Z/d50 in CP shearing with
different Rn values for: (a) p0 = 100 kPa, (b) p0 = 200 kPa, (c) p0 = 500 kPa,

(d) p0 = 1000 kPa and (e) p0 = 1800 kPa.

into account, particularly at higher pressure levels, similar to the current DEM
simulations.

It is shown that the distribution of considered parameters across the height
of the granular specimen is strongly influenced by the wall roughness and the
applied pressure level, Figs. 14 and 15. However, the results relevant to rough and
very rough walls (Rn = 1.0, 2.0) are comparable and very close to each other.

By comparing the obtained DEM results with the Cosserat FE predictions,
it is found that they qualitatively correspond to each other.

According to Figs. 16(A) and 17(A), the wall roughness and the applied pres-
sure level have controlling influences on the evolution of wall shear stress, σ∗zx,
mobilized at the middle of the bottom wall’s surface in both normal confining
conditions. In this regard, the rougher walls are resisting against larger shear
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Fig. 17. Evolution of (A) σ∗zx, (B) ϕm, (C) n and (D) εv across Z/d50 in CV shearing with
different Rn values for: (a) p0 = 100 kPa, (b) p0 = 200 kPa, (c) p0 = 500 kPa,

(d) p0 = 1000 kPa and (e) p0 = 1800 kPa.

displacement, in comparison with smooth walls, because of sustaining the great-
est stress ratios and completely mobilizing the shear resistance of the granular
material. In addition, the peak values of the wall shear stress are obtained at
larger shear displacements under both confining conditions as the pressure level
increases, Figs. 16(A) and 17(A).

In response to the higher values of wall roughness (i.e., Rn = 1.0, 2.0), which
corresponds to rough and very rough walls, close values of shear stresses at both
peak, and stationary conditions are obtained. The evolution curves presented
for rough and very rough walls possess more obvious peaks compared to that of
relatively smooth wall, Figs. 16(A) and 17(A). For walls with higher roughness,
all evolution curves of shear stress versus shear displacement first ascend to peak
stress higher than the limit stress. Subsequently, they descend steadily and pro-
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ceed towards asymptotic values under steady stress condition at large shearing,
Figs. 16(A) and 17(A). As observed in the figures, the evolution curves of shear
stress mobilized along the smooth wall result in perfectly plastic behaviors with
no apparent peaks.

According to Figs. 16(B) and 17(B), similar to shear stress, the friction angle,
ϕm = tan−1(σ∗zx/σ

∗
zz), mobilized at the middle of the bottom wall’s surface in-

creases first up to a peak state, and then it gradually softens and reduces towards
a stationary value. The shear displacement in which the peak wall frictional re-
sistance is taken place, increases in both CP and CV conditions as the wall
roughness, and the pressure level rises, Figs. 16(B) and 17(B). The higher the
pressure level, the lower the shear resistance. Concerning the wall friction angles,
the mobilized peak and residual values increase almost linearly in both normal
confining conditions when the wall roughness grows. It is observed that the mo-
bilized wall friction angle rises in the range of around 0◦ to 40◦ with increasing
wall roughness, Figs. 16(B) and 17(B).

Periodic fluctuations appear in the evolution curves of wall shear stress and
wall friction angle during steady-state condition for Rn = 0.5, Figs. 16(A,B)
and 17(A,B). This is due to that the layer of boundary particles cannot fit into
the surface teeth. Therefore, they move in alternating order between the peaks
and the valleys of the teeth, which results in periodic oscillation. In contrast,
the layer of boundary particles can be trapped in the areas between the teeth of
the wall surface in higher roughness values (Rn = 1.0, 2.0). In the latter cases,
the layer of boundary particles travel with the moving wall, and no oscillation
is observed in the evolution curves [82].

It is seen in Figs. 16(C) and 17(C) that all evolution curves of porosity, n,
obtained at the middle of the bottom wall’s surface, start at a certain value that
is smaller than its primary magnitude (n0 = 0.32). Then, the porosity curves
continuously increase concerning the walls with higher surface roughness values
(i.e., Rn = 1.0, 2.0), and subsequently, they approach asymptotical states at
large shearing in both normal confinements, Figs. 16(C) and 17(C). This means
that the granular materials contract first by applying the initial normal pressure
and then dilate with advanced shearing. However, the porosity values in shear-
ing under CV condition are lower than those in the corresponding CP condition,
Figs. 16(C) and 17(C). Moreover, an isotropic specimen becomes anisotropic due
to shearing. Continuous dilatancy takes place with the highest rate close to the
peak stress which will be negligible at the steady-state, Figs. 16(C) and 17(C).
For lower magnitudes of wall roughness (i.e., Rn = 0.5), the porosity insignif-
icantly rises and is nearly steady for continued shear displacement. In smooth
wall (i.e., Rn = 0.0), however, they remain zero during interface shearing.

Volumetric strain curves calculated for the whole specimen show the behavior
similar to that of porosity in CP condition, Fig. 16(D). It is worth noting that
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volumetric strain is calculated by the normal deformation of the specimen divided
by its initial height. The volumetric strain starts rising, while tending towards

Fig. 18. Distribution of particle rotation within the deformed granular specimen under CP
shearing with (a, c, e) Rn = 0.5 and (b, d, f) Rn = 2.0 after UXB/h0 = 0.3 and for:

(A) p0 = 100 kPa, (B) p0 = 500 kPa and (C) p0 = 1800 kPa.

Fig. 19. Distribution of particle rotation within the deformed granular specimen under CV
shearing with (a, c, e) Rn = 0.5 and (b, d, f) Rn = 2.0 after UXB/h0 = 0.3 and for:

(A) p0 = 100 kPa, (B) p0 = 500 kPa and (C) p0 = 1800 kPa.
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a constant magnitude at large shearing, which is more evident at higher pressure
levels (i.e., P0 ≥ 500). Ultimately, the dilation rate becomes negligible, and
the volumetric strain-shear displacement curves become almost horizontal, as
indicated in Fig. 16(D). As it is expected, however, the values of volumetric
strain are zero in CV shearing [14], depicted in Fig. 17(D).

Figures 18 and 19 present the distribution of particle rotation within the
deformed granular specimen under CP and CV conditions, respectively. The
figures are displayed for different values of wall roughness and pressure level after
a horizontal shear displacement of UXB/h0 = 0.30. It is found from the figures
that the shearing mechanism of the particulate-wall interface system changes
dramatically with the magnitudes of wall roughness and applied pressure level.

It is noteworthy that the width of the wall shear zone in the interface shear
test is not uniform along the bottom wall’s surface, unlike the lateral infinite
shear layer, comparing Figs. 18 and 19 with Figs. 10 and 11. This non-uniformity
of the wall shear zone thickness is due to the presence of rigid lateral boundaries
of the interface shear box. However, similar to infinite shearing, the width of the
wall shear zone achieves its maximum magnitude in the highest wall roughness
(i.e., Rn = 2.0), Figs. 18(b,d,f) and 19(b,d,f). The width of the localized shear
zone is nearly the same in both CP and CV conditions with similar values of
wall roughness and pressure level, Figs. 18 and 19. Therefore, the width of the
wall shear zone does not depend on the normal confining condition after large
shearing as also similarly presented in the FE results.

At lower pressure level (i.e., p0 = 100 kPa), the wall shear zone is formed
directly at the bottom in the vicinity of the wall surface, Figs. 18(A) and 19(A).
This is clearly indicated with higher particle rotations close to the wall surface
rather than the rest parts of the specimen. Under both CP and CV shearing
conditions, the localized deformation zone moves upward and its distance from
the wall surface increases in the higher values of pressure level and wall roughness
(i.e., Rn = 2.0 and p0 = 500, Rn = 2.0 and 1800 kPa). In the mentioned cases,
the boundary particles are trapped within the valleys of the wall’s surface and
the shear zone appears above the surface asperities, Figs. 18(d,f) and 19(d,f).
These DEM findings are consistent with those of the Cosserat FE model.

5. Conclusions

According to the performed numerical simulations, the following conclusions
can be drawn:
• The progression of deformations exterior to the wall shear zone is more

pronounced in CV condition compared to that of CP condition. Although
the additional shear deformations out of the wall shear zone are almost
negligible in the rough walls under CP, they are continuously developed in
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the whole section of the shear layer under CV. Up to a horizontal displace-
ment of U1B/h0 = 2.00 in CV shearing, the localized deformations cannot
be detected in the granular medium adjacent to a moving rough wall (e.g.,
fw = 0.05).
• For interface shearing under CV condition, dilation in the wall shear zone

is correspondingly reimbursed by compression within the remaining parts
of the granular medium. Thus, the requirement for CV is satisfied within
the entire shear layer and the mean value of the void ratio keeps constant
across the layer height.
• Comparing the values of the wall friction angle obtained from CP and

CV shearing demonstrates that, while more pronounced peaks are distin-
guished for CP condition, the rather same stationary values are approached
for the same interface coefficient, fw, in both normal confinements. This
implies that the peak magnitudes of the wall friction angle are influenced
by the stresses induced within the granular body, but the stationary values
are independent of the pressure level and the normal confining constraints.
• The localized shear zone has nearly similar width for both CP and CV

interface shearing with the same fw value. It is found that the width of
the wall shear zone is independent of the normal confining condition after
applying large shear deformations.
• According to the distribution of void ratio and couple stress across the

layer height, obtained from the FE analyses, the predicted width of the
wall shear zone is about 14d50 and 15d50, 9d50 and 10d50, 4d50 and 5d50

in CP and CV conditions, respectively, for fw = 0.10, 0.25, and 0.50,
respectively. The width of the wall shear zone next to a rough wall (e.g.,
fw = 0.05) under CP shearing is equal to 19d50, while no localized zone
can be distinguished in CV shearing under similar roughness condition.
• The peak and residual stress ratios increase with decreasing pressure level

and initial void ratio, and increasing wall roughness. The width of the wall
shear zone depends significantly on the initial void ratio and insignificantly
on the pressure level. The predicted width of the wall shear zone is larger
for higher pressure level and wall roughness, and lower initial void ratio. If
the initial void ratio reaches or exceeds the pressure-dependent critical void
ratio (e0 ≥ ec = 0.84), then the wall shear zone approaches the size of the
granular medium (here, 40×d50). It is revealed that the results of CP inter-
face shearing under higher pressure levels approach those of CV condition.
• The FE results have qualitatively been evaluated against those of DEM

simulations in terms of distribution and evolution of field variables within
the granular specimen. It is observed that both the microscopic and macro-
scopic responses of the Cosserat FE model are appropriately in accordance
with those of DEM simulations.
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Here, however, only qualitative comparisons have been presented between FE
and DEM results. In a further article, the new findings of the conducted DEM
simulations and the relevant quantitative comparisons are given in more detail.
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