PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of Microbiocenosis Immobilized on Carrer in Technologies of Biological Treatment of Surface and Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The role of fibrous carrer in the formation of microbiocenosis, which provides purification of aquatic environments, was studied. The prospects of using the "Vija" fibrous carrer for cleaning the watercourses of mountainous areas were studied. The species composition, as well as the kinetics of periphyton formation on fibrous carrer, were established. The species composition of the microbiocenosis, which is formed on carrer in the mode of active aeration of landfill filtrates and the prospects of using the method of aerated lagoon for filtrate treatment were studied.
Rocznik
Strony
34--43
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Lviv Polytechnic National University, 12, S. Bandery Str., Lviv, 79013, Ukraine
  • Bucovinian State Medical University, Teatralna sq., 2, 58002, Chernivtsi, Ukraine
  • Bucovinian State Medical University, Teatralna sq., 2, 58002, Chernivtsi, Ukraine
  • Poltava V.G. Korolenko National Pedagogical University, Ostrogradskoho str, 2, 36000, Poltava, Ukraine
autor
  • Lviv Polytechnic National University, 12, S. Bandery Str., Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, 12, S. Bandery Str., Lviv, 79013, Ukraine
  • Ivan Franko National University of Lviv, Department of Microbiology, Hrushevsky Str. 4, Lviv, 79005, Ukraine
  • Kremenchuk Mykhailo Ostrohradskiy National University, Pershotravneva Street 20, Kremenchuk, 39600, Ukraine
  • Kharkiv National University of Civil Engineering and Architecture, Sumska Str. 40, Kharkiv, 61000 Ukraine
  • Bucovinian State Medical University, Teatralna sq., 2, 58002, Chernivtsi, Ukraine
Bibliografia
  • 1. Andreiuk K.I., Iutynska H.O., Antypchuk A.V. 2001. The functioning of soil microbial coenoses in the conditions of anthropogenic pollution. Kyiv, Oberehy, 240. (in Ukrainian)
  • 2. Blyashyna M., Zhukova V., Sabliy L. 2018. Processes of biological wastewater treatment for nitrogen, phosphorus removal by immobilized microorganisms. Eastern-European Journal of Enterprise Technologies, 2/10(92), 30–37. https://doi.org/10.15587/1729-4061.2018.127058
  • 3. Bouabidi Z.B., El-Naas M.H., Zhang Z. 2019. Immobilization of microbial cells for the biotreatment of wastewater: A review. Environmental Chemistry Letters, 17, 241–257, https://doi.org/10.1007/s10311-018-0795-7
  • 4. Christensson M., Welander T. 2004. Treatment of municipal wastewater in a hybrid process using a new suspended carrier with large surface area Water Sci Technol, 49(11–12), 207–214 https://doi.org/10.2166/wst.2004.0843
  • 5. Dombrovskiy K.O., Rylskyy O.F., Gvozdyak P.I. 2020. The Periphyton Structural Organization on the Fibrous Carrier “Viya” over the Waste Waters Purification from the Oil Products. Hydrobiological Journal, 56(3), 87–96. https://doi.org/10.1615/HydrobJ.v56.i3.70
  • 6. Hvozdiak P. 2003. According to the principle of the bioconveyor. Visnyk NAN Ukrainy, 3, 29–36. (in Ukrainian)
  • 7. Jurecska L., Barkács K., Kiss É., Gyulai G., Felföldi T., Törő B., Kovács R., Záray G. 2013. Intensification of wastewater treatment with polymer fiber-based biofilm carriers. Microchemical Journal, 107, 108–114. https://doi.org/10.1016/j.microc.2012.05.028
  • 8. Kilonzo P., Bergougnou M. 2012. Surface modifications for controlled and optimized cell immobilization by adsorption: applications in fibrous bed bioreactors containing recombinant cells. J. Microbial Biochem. Technol., 4, 22–30. https://doi.org/10.4172/1948-5948.S8-001
  • 9. Kovalchuk N.Y. 2011. Donni kolovertky vodoim Karpat. Scientific Bulletin of the Uzhhorod University. Series Biology, 30, 110−112. (in Ukrainian)
  • 10. Kutikova L.A., Starobogatov Y.I. 1977. Key to the freshwater invertebrates of the European part of the USSR (plankton and benthos), Leningrad, 511. (in Russian)
  • 11. Landreau M., Byson S.J., You H., Stahl D.A., Winkler M.K.H. 2020. Effective nitrogen removal from ammonium-depleted wastewater by partial nitritation and anammox immobilized in granular and thin layer gel carriers. Water Research Open Access, 18315, 116078. https://doi.org/10.1016/j.watres.2020.116078
  • 12. Makarevich A.V., Dunaitsev I.A., Pinchuk L.S. 2000. Aerobic treatment of industrial wastewaters by biofilters with fibrous polymeric biomass carrier. Bioprocess Engineering, 22, 121–126. https://doi.org/10.1007/s004490050021
  • 13. Malovanyy M., Petrushka K., Petrushka I. 2019a. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chemistry & Chemical Technology, 13(3), 372–376. https://doi.org/10.23939/chcht13.03.372
  • 14. Malovanyy M., Moroz O., Hnatush S., Maslovska O., Zhuk V., Petrushka I., Nykyforov V., Sereda A. 2019b. Perspective Technologies of the Treatment of the Wastewaters with High Content of Organic Pollutants and Ammoniacal Nitrogen. Journal of Ecological Engineering, 20(2), 8–15. https://doi.org/10.12911/22998993/94917
  • 15. Malovanyy M., Palamarchuk O., Trach I., Petruk H., Sakalova H., Soloviy Kh., Vasylinych T., Tymchuk I., Vronska N. (2020). Adsorption Extraction of Chromium Ions (III) with the Help of Bentonite Clays. Journal of Ecological Engineering, 21(7), 178–185, https://doi.org/10.12911/22998993/125545
  • 16. Malovanyy M., Moroz O., Popovich V., Kopiy M., Tymchuk I., Sereda A., Krusir G., Soloviy C. 2021. The perspective of using the «open biological conveyor» method for purifying landfill filtrates. Environmental Nanotechnology, Monitoring & Management, 16(2021), 100611. https://doi.org/10.1016/j.enmm.2021.100611
  • 17. Mandryk O.M., Moskalchuk N.R., Arkhypova L.M., Pryhodko M.M., Pobigun O.V. 2020. Research quantitative indicators of the potential of solar energy in the Carpathian region of Ukraine. E3S Web of Conferenceson Sustainable Futures: Environmental, Technological, Social and Economic Matters, 166, 04005. https://doi.org/10.1051/e3sconf/202016604005
  • 18. Silveira M.S.C., Martins C.M., Fiúza L.M.C.G., Santaella S.T. 2013. Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology, 12(28), 4412–4418. https://doi.org/10.5897/AJB12.2677
  • 19. Masikevych Y., Myslytsky V., Tkachuk S., Masikevych A. 2015. Safe environment-guranty of the population health highlanders. Challenges for ecological and technological safety of the Carpathian region. Current issues of social studies and history of medicine: Joint Ukraine-Romanian scientific journal. Bucovinian State Medical University-Stepan Cel Mare University of Sucheva, 8, 72–78.
  • 20. Masikevych A., Kolotylo M., Yaremchuk V., Masikevych Yu., Myslytskyi V., Burdenyuk I. 2017. Use of artificially created “biofilters” for assessing the quality and purification of surface water in protected areas. Danish Scientific Journal, 7, 57–59.
  • 21. Odnorih Z., Manko R., Malovanyy M., Soloviy K. 2020. Results of surface water quality monitoring of the western bug river Basin in Lviv Region. Journal of Ecological Engineering, 21(3), 18–26. https://doi.org/10.12911/22998993/118303
  • 22. Popovych V., Telak J., Telak O., Malovanyy M., Yakovchuk R., Popovych N. (2020). Migration of Hazardous Components of Municipal Landfill Leachates into the Environment. Journal of Ecological Engineering, 21(1), 52–62. https://doi.org/10.12911/22998993/113246
  • 23. Rylskyi O.F., Masikevych Y.H. 2012. Microbiological bioindication of the environment contaminated with heavy metals and other xenobiotics. Bulletin of Zaporizhzhіa National University, Biology, 3, 139–147. (in Ukrainian)
  • 24. Semenenko Y., Demchenko T., Pavlichenko A. 2020. Calculation of the maximum velocity of gravity flow in the pond-clarifier with higher aquatic plants. E3S Web of Conferences, 168, 00029, https://doi.org/10.1051/e3sconf/202016800061
  • 25. Tepper E.Z., Shelnikova V.K., Pereverzeva G.I. 1987. Practicum on microbiology. Moskva, Agropromizdat, 239. (in Russian)
  • 26. Volkohon V.V. (Eds.). 2010. Experimental soil microbiology. Kyiv, Ahrarna nauka, 464.
  • 27. Voytovych I., Malovanyy M., Zhuk V., Mukha O. 2020. Facilities and problems of processing organic wastes by family-type biogas plants in Ukraine. Journal of water and land development, 45 (IV–VI). 185–189. https://doi.org/10.24425/jwld.2020.133493
  • 28. Wang G.J., Chu L.Y., Chen W.M., Zhou M.Y. 2005. A porous microcapsule membrane with straight pores for the immobilization of microbial cells. Journal of Membrane Science, 252(1–2), 279–284, https://doi.org/10.1016/j.memsci.2005.01.040
  • 29. Yang Dong, Shu-Qian Fan, Yu Shen, Ji-Xiang Yang, Peng Yan, You-Peng Chen, Jing Li, Jin-Song Guo, Duan X.M., Fang F., Liu S.Y. 2015. A Novel Biocarrier Fabricated Using 3D Printing Technique for Wastewater Treatment. Scientific Reports, 5, 12400. https://doi.org/10.1038/srep12400
  • 30. Zdarta J., Jankowska K., Bachosz K., Degórska O., Kaźmierczak K., Nguyen L.N., Nghiem L.D., Jesionowski T. 2021. Enhanced wastewater treatment by immobilized enzymes. Current Pollution Reports, 7(2), 167–179. https://doi.org/10.1007/s40726-021-00183-7
  • 31. Zhao Y., Liu D.,Huang W., Yang Y., Ji M. , Duc N.L., Thang T.Q., Han T. 2019. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. Bioresource Technology, 288, 121619. https://doi.org/10.1016/j.biortech.2019.121619
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24cd242d-4a5d-4347-a6f6-dd3004802cec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.