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Abstract. This article provides a simulation and laboratory study of a control system for 

a two-wheeled differential-drive mobile robot with ROS system. The authors propose an 

approach to designing a control system based on a parametric model of the robot’s 

dynamics. The values of unknown parameters of the dynamic model have been 

determined by means of a Levenberg-Marguardt identification method. By comparing the 

desired trajectories with those obtained from simulation and laboratory tests, and based 

on errors analysis, the correctness of the model parameter identification process and the 

control system operation was then determined. 

Keywords: mobile robot, ROS, parametric dynamic model, identification, trajectory 

tracking 
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1. INTRODUCTION 

 
When choosing a robot to perform a given task, we usually look at its 

accuracy, functionality and driving capabilities. Parameters such as functionality 

and driving ability are characteristics of a given robot and do not change over 

time. Given the complexity of mobile robot design, positioning accuracy  

(a measure of how close a robot can get to a designated point in space) is  

a parameter that is most influenced by several varied factors. Positioning 

accuracy is not a fixed characteristic, it depends on the nature of the work being 

performed by the robot, the length and intensity of the operation, and the way in 

which it is controlled. There are works [1, 2] in the literature concerning research 

into the influence of external factors on the positioning accuracy of robots. The 

sources of errors are divided into four groups: kinematic, dynamic, control and 

design. For each group, the factors that have the greatest impact on positioning 

accuracy have been identified (Table 1). 

The impact of some of these factors on the positioning accuracy of a mobile 

robot can be reduced at the design stage of the robot and its control system. These 

are mainly dynamic or kinematic related factors, where the designer can perform 

simulations at the initial design stage and then, based on these, verify the correct 

selection of the motors or robot dimensions [17]. Also, for design-related factors, 

their importance in positioning accuracy can be reduced based on the designer's 

experience, engineering knowledge and accuracy during assembly. However, 

there are a number of parameters that change over the robot's lifetime and with 

any change in purpose. The working environment has a particular impact on any 

change in operating parameters, especially if it is harsh, such as dusty rooms, 

industrial and sewage pipelines, or mines [18]. To this end, when designing  

a control algorithm, it is necessary to take into account the possibility of changing 

the model parameters based on their identification by numerical methods. 

Table 1. Factors affecting the accuracy of trajectory tracking by a mobile robot 

Kinematics Dynamics 

- running gear 

- complexity 

- operating space 

- inertia 

- friction 

- drives 

Control Design 

- sensor resolution 

- speed of the algorithm 

- correct operation of the algorithm 

- operating time 

- precision 

- workload 
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2. MODELLING THE TURTLEBOT 2 ROBOT 

 

The studies presented in this paper included the laboratory TURTLEBOT 2 

robot (Figure 1) [3], which was a low-budget exercise kit, for the construction 

and testing of wheeled mobile robot control systems.  

 

Fig. 1. Isometric view of the TURTLEBOT 2 robot with the base coordinate system. 

The platform was equipped with a two-wheeled differential drive and basic 

sensors, such as a laser scanner, a 640 × 480 resolution RGB vision camera (used 

for image processing, colour and texture recognition), an IR camera (depth 

information processing, distance measurement 0.4 - 6.5 m), four directional 

microphones and an accelerometer. The advantage of this robot is its open control 

system ROS (Robot Operating System), which enables the platform to be quickly 

started and integrated with sensors [19]. 

 

2.1. Robot kinematics and dynamics model 
 

To determine the kinematics model of the TURTLEBOT 2, the diagrams 

shown in Figure 2 were used.  

The coordinate system, shown in Figure 2 O0X0Y0, was a global, fixed 

reference system. Its P and C points were respectively: point P – centre of the arc 

for planar motion, point C – target point of the robot's progressive movement, 

with the angle β being the rotation angle of the robot around the point P. The 

position of the robot in the coordinate system O0X0Y0 determined the coordinates 

x, y while the orientation was determined by the angle Θ. 
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Fig. 2. Kinematic structure of the TURTLEBOT 2 

 
The coordinate system ORXRYR was a system with an origin at the geometric 

centre of the robot and was linked to the robot frame. The coordinate systems 

OAXAYA and OBXBYB were connected with the drive wheels: A and B respectively, 

with an origin in the wheel axes. The angles φA and φB were the angles of self-

rotation of wheels A and B. 

The kinematics of the TURTLEBOT 2 mobile robot was described by 

equation (1) in a form in which the angular velocities of the drive wheels were 

the control signals [4-7]: 

[
𝑥̇
𝑦̇

𝜃̇

] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

]
𝑟

2
[

𝜑̇𝐴 + 𝜑̇𝐵

0
𝜑̇𝐴 + 𝜑̇𝐵

𝑑

] (1) 

By converting the above equation into a form where the linear υ and angular 

ω velocities of the robot were control signals, described by the relations: 

𝑣 =
𝑟(𝜑̇𝐴 + 𝜑̇𝐵)

2
,     𝜔 =

𝑟(𝜑̇𝐴 − 𝜑̇𝐵)

2𝑑
 (2) 

the robot kinematics model described by the equation system were obtained: 

[

𝑥̇
𝑦̇

𝜃̇

] = [
𝑐𝑜𝑠𝜃 0
𝑠𝑖𝑛𝜃 0
0 1

] [
𝑣
𝜔

] (3) 

When analysing the literature for control systems, it can be noted that most 

of the proposed controllers performing a trajectory tracking task consider only 

the robot's kinematics.  
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This was an acceptable solution, but for tasks requiring high positioning 

accuracy and high-speed movement, it was necessary to include the robot's 

dynamics in the control. In the literature, dynamic models of robots that consider 

torques or motor voltages as control signals were popular [13-16]. A much better 

solution was to use a dynamic model that takes the linear and angular speed of 

the robot as control signals [8, 9]. This was how commercially available mobile 

robots were usually controlled. Figure 3 shows a diagram of the TURTLEBOT 2 

robot used to determine the dynamics model. 

 
Fig. 3. TURTLEBOT 2 robot diagram for dynamic model development 

The G point shown in the TURTLEBOT 2 diagram (Fig. 3) was the robot's 

centre of mass and centre of rotation, and at the same time the tracking point of 

the desired trajectory. The robot movement velocities were indicated as:  

υx – forward velocity, υy – side velocity, and ω – angular velocity. Figure 3 

indicates the robot's drive forces as Frrx, Frry – the longitudinal and lateral force 

of the right wheel and Frlx, Frly – the longitudinal and lateral force of the left 

wheel. The dynamics model of the robot was formulated on the basis of the forces 

and moments balance in the system related to the robot, following [10]: 

∑𝐹𝑥 = 𝐹𝑟𝑙𝑥 + 𝐹𝑟𝑟𝑥 = 𝑚(𝑣̇𝑥 − 𝑣𝑦𝜔)

∑𝐹𝑦 = 𝐹𝑟𝑙𝑦 + 𝐹𝑟𝑟𝑦 = 𝑚(𝑣̇𝑦 − 𝑣𝑥𝜔)

∑𝑀𝑧 = 𝐼𝑧𝜔 = 𝑑(𝐹𝑟𝑟𝑥 − 𝐹𝑟𝑙𝑥)

 (4) 

where: 

m – mass of the robot,  

Iz – moment of inertia of the robot with respect to the axis passing through 

point G.  
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The conversion of the equation system (4) was the dynamic model of the 

TURTLEBOT 2 (see Appendix 1): 

[
𝑣̇𝑥

𝜔̇
] =

[
 
 
 −

𝛿3

𝛿1
𝑣𝑥

−
𝛿4

𝛿2
𝜔

]
 
 
 

+

[
 
 
 
1

𝛿1
0

0
1

𝛿2]
 
 
 

[
𝑣𝑑

𝜔𝑑
] (5) 

The coefficients of the model δ1…δ4 included parameters that were difficult 

for the laboratory robot user to obtain. As these factors were the physical 

functions parameters of the robot related to drives, transmissions, internal 

controls and friction, and were usually not even included in the user manuals or 

equipment technical sheets, their identification had to be carried out. 

 

2.2. Identification of the TURTLEBOT 2 robot model parameters 

 
Before starting to identify the model parameters, it should be checked 

whether any of the model parameters can be written as a linear combination of 

two others. In this case, it would be possible to describe the robot dynamics model 

with fewer parameters. Analysing the developed mathematical model of the 

robot, the linear independence between the parameters δ1…δ4 was not clearly 

visible because some physical parameters affect more than one parameter δn , so 

a detailed analysis was necessary, which was carried out in the work [9] to 

demonstrate that the model parameters from δ1 to δ4 were independent, so they 

could not be written as a linear combination. Ultimately, it was necessary to 

identify each of the parameters δ1…δ4. 

The robot model parameters were identified using the Levenberg-Marguardt 

method (lsqnonline) for the minimization criterion: 

min
𝑞

‖𝐽(𝑥)𝑞 + 𝐹(𝑥)‖2
2 (6) 

where J(x) was a Jacobian vector of F(x), and q was the direction of the search 

for the minimum function determined in accordance with the rule: 

[𝐽(𝑥)𝑇𝐽(𝑥) + 𝛼𝐼]𝑞 = −𝐽(𝑥)𝐹(𝑥),      𝑑𝑙𝑎 𝛼 ≥ 0  (7) 

The identification was performed for random start values of the identified 

parameter described by a normal distribution with the expected value μ = 1 and 

variance σ2 = 1 in the range 〈0, 1〉. The mean value from all tests of the identified 

parameter was then determined, along with the variance and standard deviation 

(Table2).  
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Table 2. Sample values of model parameters and identification process. 

No. 

of 

test 

 σ1 σ2 σ3 σ4 
Identification 

time [s] 

1 
Start values 0.16 0.52 0.96 0.37  

Identified values 4.09 5.46 0.97 0.29 6.65 

2 
Start values 0.61 0.26 0.76 0.29  

Identified values 3.14 4.06 0.81 0.24 6.01 

3 
Start values 0.59 0.55 0.92 0.29  

Identified values 3.14 4.17 0.83 0.24 6.40 

4 
Start values 0.65 0.45 0.55 0.30  

Identified values 3.49 4.63 0.85 0.24 5.92 

       

 Average 3.47 4.58 0.87 0.25 6.25 

 Variance 0.15 0.30 0.00 0.00  

 

Standard 

deviation 
0.39 0.55 0.06 0.02  

 

2.3. Kinematic and the dynamic controllers 

 

The task of tracking a reference trajectory by a robot has always been 

associated with the occurrence of errors - the difference between the reference 

position and the actual position. In order to minimise the errors, a proportional 

kinematic controller with a feedback loop, developed on the basis of [11], which 

was designed to obtain control signals that could direct the robot on a desired 

trajectory based on minimizing errors of the positions ex, ey, eΘ described by 

equation (8) as a transformation of the difference between the reference position 

and orientation, denoted as x(t), y(t), Θ(t), and the actual position and orientation, 

denoted as xr(t), yr(t), Θr(t): 

[

𝑒𝑥(𝑡)
𝑒𝑦(𝑡)

𝑒𝜃(𝑡)

] = [
𝑐𝑜𝑠𝜃(𝑡) 𝑠𝑖𝑛𝜃(𝑡) 0
−𝑠𝑖𝑛𝜃(𝑡) 𝑐𝑜𝑠𝜃(𝑡) 0

0 0 1

] [

𝑥(𝑡) − 𝑥𝑟(𝑡)
𝑦(𝑡) − 𝑦𝑟(𝑡)
𝜃(t) − 𝜃𝑟(𝑡)

] (8) 

The kinematic controller proposed on the basis of [11] took the form: 

[
𝑢𝑘𝑣(𝑡)
𝑢𝑘𝜔(𝑡)

] = [
−𝑘1 0 0

0 −𝑠𝑖𝑔𝑛(𝑣𝑟(𝑡))𝑘2 −𝑘3
] [

𝑒𝑥(𝑡)
𝑒𝑦(𝑡)

𝑒𝜃(𝑡)
] (9) 
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where: ukv(t) and ukω(t) were the control signals of the kinematic controller (linear 

and angular velocity) and its gains k1, k2, k3 were determined from the following 

dependencies [11]: 

𝑘1 = 𝑘3 = 2𝜀𝜔𝑛(𝑡),      𝑑𝑙𝑎 𝜀 ∈ (0,1) 

𝑘2 = 𝑏 ∗ |𝑣𝑟(𝑡)|,     𝑏 > 0 

𝜔𝑛(𝑡) = √𝜔𝑟
2(𝑡) + 𝑏𝑣𝑟

2(𝑡) 

(10) 

where:        ε – oscillations damping coefficient,  

ωn(t) – characteristic frequency,  

      b – additional adjustment coefficient,  

  vr(t) – actual linear velocity, and 

 ωr(t) – actual angular velocity. 

The assumption for the development of the dynamic controller was to treat 

the control signals from the kinematics controller (linear and rotational angular 

velocities) expressed by dependencies (9) as reference signals. The control law 

for the dynamic controller was developed on the basis of the inverse dynamics 

task (Appendix 2) using the parametric model of the robot dynamics (5) and the 

considerations presented in the paper [12]. The control law was described by the 

equation: 

[
𝑢𝑑𝑣(𝑡)
𝑢𝑑𝜔(𝑡)

] = [
𝛿1 0
0 𝛿2

] [
𝜗1

𝜗2
] + [

0
0

0
0

𝑣𝑟(𝑡)
0

0
𝜔𝑟(𝑡)

] [𝛿1 𝛿2 𝛿3 𝛿4]
𝑇  

 (11) 

𝜗1 = 𝑣̇(𝑡) + 𝑘𝑣(𝑢𝑘𝑣(𝑡) − 𝑣𝑟(𝑡)) 
𝜗2 = 𝜔̇(𝑡) + 𝑘𝜔(𝑢𝑘𝜔(𝑡) − 𝜔𝑟(𝑡)) 

 

where: kv and kω were the gains, udv(t) and udω(t) were the control signals of the 

dynamic controller. 

 

3. CONTROL ALGORITHM TESTS 

The correct operation of the TURTLEBOT 2 robot's trajectory tracking 

control algorithm and the correctness of the parameter identification for its 

mathematical model were first verified by simulation and then implemented on 

the actual robot. Tests were conducted for the circular trajectory described by the 

equation system: 

[

𝑥𝑑

𝑦𝑑

𝜃𝑑

] = [

𝑥0 + 𝑅sin (𝜔𝑡)
𝑦0 + 2𝜔𝑡

𝑎𝑡𝑎𝑛2(𝑦̇𝑑 , 𝑥̇𝑑) + 𝑘𝜋
] (12) 
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where: x0 =0, y0 = 0, R =1 [m], ω = 0.1 [rad/s], k = 0 if the robot moves forward, 

k = 1 if the robot moves backward. 

 

3.1. SIMULATION TESTS 

 

The block diagram of the TURTLEBOT 2 follow-up motion simulation 

(Figure 4) was conducted in the MATLAB/Simulink environment, allowing the 

input of identified robot model parameters. The control system consisted of a set 

trajectory generator module determining position (xd, yd) and orientation Θd,  

a reference linear vd and angular ωd velocity generator, a kinematic controller 

described by equation (9), a dynamic controller described by equation (11) and  

a mathematical model of the robot described by equations (3) and (5).  

 
Fig. 4. Block diagram of the TURTLEBOT 2 trajectory tracking simulation 

The simulation uses the average values of the model parameters shown in 

Table 2. A comparison between the set trajectory and the trajectory obtained from 

the simulation, taking into account the parameters identified by the Levenberg-

Marguardt method is shown in Fig. 5, the position and orientation deviations are 

shown in Fig. 6a, while speed deviations are shown in Fig. 6b.  
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Fig. 5. Comparison of the desired trajectory and the trajectory obtained from the 

simulation 

 
Fig. 6. Errors: a) tracking the reference trajectory, b) velocities 

Based on the analysis of the simulation-determined errors shown in Fig. 6, 

it can be concluded that the controller based on the inverse dynamic task with the 

identified parameters by the Levenberg-Marguardt method performed trajectory 

tracking control with position and orientation (Figure 5a), and velocity (Figure 

5b) errors not greater than: 

 x-axis direction: ex = 0.031 [m]; 

 x-axis direction: ey = 0.025 [m]; 

 orientation: eΘ = 0.014 [rad]; 

 linear velocity: ev = 0.006 [m/s]; 

 angular velocity: eω = 0.0003 [rad/s]. 

(a) (b) 
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The regulation time for a circular trajectory tracking task was equal to  

tr ≈ 3.5 [s]. 

3.2. Laboratory tests 

 

The laboratory tests for trajectory tracking control of the real TURTLEBOT 

2 were carried out on the basis of the control system shown in Figure 7. The 

system used a kinematic and dynamic controller implemented using the basic 

elements of the Simulink package. The Simulink/ROS library and two tools were 

used to communicate with the robot’s operating system: Publisher - to publish  

a specific type of message in the declared communication channel, and 

Subscriber - for receiving messages from the robot system transmitted in the 

declared communication node. Using the Publisher, control signals were sent to 

the robot system in the form of linear and angular speed. Using the Subscriber, 

position and orientation were received from the robot system. 

The laboratory tests used the average values of the model parameters shown 

in Table 2. A comparison between the reference and real trajectories for the 

TURTLEBOT 2 with the parameters identified by the Levenberg-Marguardt 

method were shown in Figure 8, the position and orientation errors were shown 

in Figure 9a, and the velocity errors were shown in Figure 9b.  

 

 
Fig. 7. Block diagram of the system for the laboratory test of the trajectory tracking 
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Fig. 8. Comparison between the reference and real trajectories in the laboratory test 

 

 
Fig. 9. Errors: a) tracking the reference trajectory, b) velocities 

 

Based on the analysis of the errors determined in the laboratory tests shown 

in Fig. 9, it could be concluded that a controller based on the inverse dynamic 

task with the identified parameters by the Levenberg-Marguardt method 

performed trajectory tracking control with position and orientation (Figure 9a), 

and velocity (Figure 9b) errors not greater than: 

 x-axis direction: ex = 0.045 [m]; 

 x-axis direction: ey = 0.036 [m]; 

 orientation: eΘ = 0.1 [rad]; 

 linear velocity: ev = 0.1 [m/s]; 

 angular velocity: eω = 0.2 [rad/s]. 

The regulation time for a circular trajectory tracking task was equal to  

tr ≈ 1.7 [s]. 

(a) (b) 
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4. CONCLUSIONS 

Tracking the trajectory by a mobile robot is a fundamental task of control 

algorithms, which allows more advanced robot functionality, including transport 

tasks, exploratory and reconnaissance tasks, or integration of multiple robots into 

a group. The control system should resist a number of errors from such sources 

as robot design inaccuracies, drive wear and tear, data transmission delays, and 

operating environment impact. The degree to which the above-mentioned errors 

were corrected is responsible for the accuracy of the robot achieving a desired 

position in the workspace. 

In these studies, the use of a parametric model of the robot's dynamics made 

it possible to easily and quickly design a control system implementing the follow-

up motion of the TURTLEBOT 2 robot. By changing the model parameters, the 

system is resistant to design changes or environmental impacts. Studies of the 

identified parameters have shown that, in the example indicated, the Levenberg-

Marguardt method (lsqnonline) allowed the correct values of the identified 

parameters to be determined for their random start values in a very short time. 

This is very important when the user does not have any information about the 

parameter values of the robot model.  

The presented comparative analysis of the reference and actual trajectories 

and the errors analysis confirmed the accuracy of the identified TURTLEBOT 2 

parameters, and by means of the proposed control system the satisfactory 

trajectory tracking results were achieved with an average deviation in position 

𝑒̅𝑥𝑦  ≈ 30 mm and orientation 𝑒̅θ =  0.05 rad. However, if the robot's design is 

modified, e.g., by adding a laser scanner, additional batteries or replacing drives, 

the identification process must be carried out again. The way to solve this 

problem is to use on-line identification when parameters were determined during 

movement. The issues raised by the authors will be developed in this direction. 
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Appendix 1 

In the case shown, the robot's pivot point G is located on the axis connecting 

the drive wheels, such that forces acting in the direction of the axis y do not 

produce any torque. Consequently, the system of equations (4) can be converted 

to: 

𝑣̇𝑥 =
𝐹𝑟𝑙𝑥 + 𝐹𝑟𝑟𝑥

𝑚
+ 𝑣𝑦𝜔

𝜔̇ =
𝑑(𝐹𝑟𝑟𝑥 − 𝐹𝑟𝑙𝑥)

2𝐼𝑧

 (13) 

The forward vx, side vy and angular ω speed excluding slip were equal to: 

𝑣𝑥 =
1

2
𝑟(𝜔𝑟 + 𝜔𝑙)

𝑣𝑥 = 0

𝜔 =  
1

2𝑑
𝑟(𝜔𝑟 − 𝜔𝑙)

 (14) 

where r - radius of the drive wheels, ωr, ωl – angular velocity of the wheels (right 

and left). 

The angular velocity of the wheels can be determined by converting the 

formulas to the driving moments of the right τr and left τl motors [8]: 
 

𝜏𝑟 =
𝑘𝑎(𝑉𝑟 − 𝑘𝑏𝜔𝑟)

𝑅𝑎

𝜏𝑙 =
𝑘𝑎(𝑉𝑙 − 𝑘𝑏𝜔𝑙)

𝑅𝑎

 (15) 

where Vr, Vl – supply voltages of the motors (right and left), kb – electrical 

constant of the motors, ka – mechanical constant of the motors, Ra – resistance of 

the motor windings. 

The drive wheel dynamics equations [8] take the form of: 

𝐼𝑒𝜔𝑟̇ + 𝐵𝑒𝜔𝑟 = 𝜏𝑟 − 𝐹𝑟𝑟𝑥𝑟
𝐼𝑒𝜔𝑙̇ + 𝐵𝑒𝜔𝑙 = 𝜏𝑙 − 𝐹𝑟𝑙𝑥𝑟

 (16) 

where Ie – moment of inertia of the wheel in relation to the axis of rotation and 

Be– viscous friction coefficient reduced to the motor shaft. 

The equations of the PD controller implemented to regulate the motor supply 

voltage [8] take the form: 

𝑢𝑣 = 𝑘𝑃𝑇(𝑣𝑑 − 𝑣𝑥) − 𝑘𝐷𝑇𝑣̇𝑥

𝑢𝜔 = 𝑘𝑃𝑅(𝜔𝑑 − 𝜔) − 𝑘𝐷𝑅𝜔̇
 (17) 
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where: 𝑢𝑣 =
𝑉𝑟+𝑉𝑙

2
, 𝑢𝜔 =

𝑉𝑟−𝑉𝑙

2
,  

kPT, kDT, kPR, kDR – PD controller gains,  

vd – desired linear velocity, and  

ωd –desired angular velocity. 

Substituting equation (15) into equation (16) and transforming it into the 

form for determining the longitudinal driving forces, the following system of 

equations was obtained: 

𝐹𝑟𝑟𝑥 =
1

𝑟
(
𝑘𝑎

𝑅𝑎

(𝑉𝑟 − 𝑘𝑏𝜔𝑟) − 𝐼𝑒𝜔̇𝑟 + 𝐵𝑒𝜔𝑟)

𝐹𝑟𝑙𝑥 =
1

𝑟
(
𝑘𝑎

𝑅𝑎

(𝑉𝑙 − 𝑘𝑏𝜔𝑙) − 𝐼𝑒𝜔̇𝑙 + 𝐵𝑒𝜔𝑙)

 (18) 

Then, substituting equations (18) to the system of equations (13), resulted 

in: 

𝑣̇𝑥 =
1

𝑟𝑚
(
𝑘𝑎

𝑅𝑎

(𝑉𝑙 + 𝑉𝑟) + (𝜔𝑙 + 𝜔𝑟) (−
𝑘𝑎

𝑅𝑎

+ 𝐵𝑒) − 𝐼𝑒(𝜔𝑙 + 𝜔𝑟̇ )) + 𝑣𝑦𝜔

𝜔̇ =
𝑑

𝐼𝑧
2𝑟

(
𝑘𝑎

𝑅𝑎

(𝑉𝑟 − 𝑉𝑙) + (𝜔𝑟 + 𝜔𝑙) (−
𝑘𝑎

𝑅𝑎

𝑘𝑏 + 𝐵𝑒) − 𝐼𝑒(𝜔𝑟 + 𝜔𝑙̇ ))

 (19) 

Combining the above equations with equations (14) and (17) meant that and 

when making algebraic transformations the expressions describing the dynamic 

model of the TURTLEBOT 2 robot were obtained: 

𝑣̇𝑥 (
1

𝑘𝑃𝑇

(
𝑅𝑎

𝑘𝑎

(
𝑟𝑚

2
+

𝐼𝑒
𝑟
) + 𝑘𝐷𝑇)) = −𝑣𝑥 (1 −

1

𝑟𝑘𝑃𝑇

(1 + 𝐵𝑒

𝑅𝑎

𝑘𝑎

)) + 𝑣𝑑

𝜔̇𝑥 (
1

𝑘𝑃𝑅

(
𝑅𝑎

2𝑘𝑎

(
𝐼𝑧

2𝑟

𝑑
+

𝑑𝐼𝑒
𝑟

) + 𝑘𝐷𝑅)) = −𝜔 (
𝑑

𝑟𝑘𝑃𝑅

(1 −
𝑅𝑎

𝑘𝑎

) + 1) + 𝜔𝑑

 (20) 

or in abbreviated form: 

𝑣̇𝑥𝛿1 = −𝑣𝑥𝛿3 + 𝑣𝑑

𝜔̇𝑥𝛿2 = −𝜔𝛿4 + 𝜔𝑑
 (21) 

 

 

 

 

 

 

 



M. Siwek, J. Panasiuk, L. Baranowski, W. Kaczmarek, Sz. Borys 

 

82 

Appendix 2 

Multiplying the equation (5) by [
𝛿1 0
0 𝛿2

] on both sides gave the form: 

[
𝛿1 0
0 𝛿2

] [
𝑣̇𝑥

𝜔̇
] = [

−𝛿3𝑣𝑥

−𝛿4𝜔
] + [

1 0
0 1

] [
𝑣𝑑

𝜔𝑑
] (22) 

When making transformations, the above expression can be written as: 

[
𝛿1 0
0 𝛿2

] [
𝑣̇𝑥

𝜔̇
] + [

𝛿3

𝛿4
] [

𝑣𝑥 0
0 𝜔

] = [
1 0
0 1

] [
𝑣𝑑

𝜔𝑑
] (23) 

and then adjusted to a parametric form: 

[
𝑣𝑑

𝜔𝑑
] = [

𝛿1 0
0 𝛿2

] [
𝑣̇𝑥

𝜔̇
] + [

0
0

0
0

𝑣𝑥

0
0
𝜔

] [𝜎1 𝜎2 𝜎3 𝜎4]
𝑇 (24) 

Based on the inverse dynamic task [12], the above expression can be used in 

the form of a dynamic controller (11). 
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Sterowanie w ruchu nadążnym robota mobilnego  

z systemem ROS  
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Streszczenie. W artykule przedstawiono badania symulacyjne i laboratoryjne systemu 

sterowania dwukołowym robotem mobilnym o napędzie różnicowym, z systemem ROS. 

Autorzy zaproponowali podejście projektowania systemu sterowania w oparciu 

o parametryczny model dynamiki robota. Wartości nieznanych parametrów modelu 

dynamiki wyznaczono przeprowadzając ich identyfikację metodą Levenberga- 

Marguardta. Następnie porównując trajektorie zadane z otrzymanymi na drodze badań 

symulacyjnych i laboratoryjnych, a także na podstawie analizy uchybów określono 

poprawność procesu identyfikacji parametrów modelu i działania systemu sterowania. 

Słowa kluczowe: robot mobilny, ROS, model parametryczny, identyfikacja, śledzenie 

trajektorii 
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