Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to define generalized (m, n)-Jordan centralizers and to prove that on a prime ring with nonzero center and char (R) ≠ 6mn(m+n)(m+2n) every generalized (m, n)-Jordan centralizer is a two-sided centralizer.
Wydawca
Czasopismo
Rocznik
Tom
Strony
257--262
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Faculty of Management, University of Primorska, Cankarjeva 5, Si-6104 Koper, Slovenia
Bibliografia
- [1] K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc. New York (1996).
- [2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1998), 1003–1006.
- [3] M. Brešar, J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321–322.
- [4] J. Cusack, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 53 (1975), 321–324.
- [5] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1110.
- [6] J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin. 40 (1999), 447–456.
- [7] J. Vukman, On (m, n)-Jordan derivations and commutativity of prime rings, Demonstratio Math. 41 (2008), 773–778.
- [8] J. Vukman, On (m, n)-Jordan centralizers in rings and algebras, Glas. Mat. 45(1) (2010), 43–53.
- [9] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), 609–614.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24c7b43b-3b76-4043-ae96-44803fbad906