PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An adaptive multi-scale network with nonorthogonal multi-union input for reducing false positive of lymph nodes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lymph node (LN) detection and analysis are of great significance in terms of cancer staging and measuring the effectiveness of treatment. But, it is still a challenging and laborious task due to the lack of adequately-labeled data and the similar pathological features with surrounding structures in computed tomography (CT). In this paper, we propose a new representation for lymph node detection after augmentation, which can effectively decom-pose candidate cubic CT images by generating nonorthogonal multi-union 2D slices. These new views with coupling relationship will be used as a novel input to train the convolutional neural networks (CNNs) to achieve the purpose of reducing false positives (FP). In order to further adapt to the mutative radiological characteristics of lymph nodes, we designed an adaptive multi-scale network. This model adaptively learns the features of different scales images and redistributes weights of convolution kernel to optimize the classification result. We validate the approach on two datasets 90 CT volumes with 388 mediastinal LNs and 86 patients with 595 abdominal LNs. Our proposed methods perform better in both two cases, sensitivities reached 78%, 86% at 3 false-positives per patient volume (FP/vol.), and 94%, 96% at 6 FP/vol. in mediastinum and abdomen respectively.
Twórcy
autor
  • College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
autor
  • College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China; Shandong Province Key Laboratory of Wisdom Mining Information Technology, Shandong University of Science and Technology, Qingdao, China
autor
  • College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
Bibliografia
  • [1] Kann BH, Aneja S, Loganadane GV, Kelly JR, Smith SM, Decker RH, et al. Pretreatment identification of head and neck cancer nodal metastasis and extranodal extension using deep learning neural networks. Sci Rep 2018;8(1):1–11.
  • [2] Bouget D, Jørgensen A, Kiss G, Leira HO, Langø T. Semantic segmentation and detection of mediastinal lymph nodes and anatomical structures in ct data for lung cancer staging. Int J Comput Assist Radiol Surg 2019;14(6):977–86.
  • [3] Tong N, Gou S, Yao Y, Wang C, Bai J. Gastric lymph nodes detection based on visual saliency and dictionary learning. 2016 IEEE Region 10 Conference (TENCON). IEEE; 2016. p. 2810–3.
  • [4] Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised recist guideline (version 1.1). Eur J Cancer 2009;45(2):228–47.
  • [5] Liu J, Zhao J, Hoffman J, Yao J, Zhang W, Turkbey EB, et al. Mediastinal lymph node detection on thoracic ct scans using spatial prior from multi-atlas label fusion. Medical Imaging 2014: Computer-Aided Diagnosis, vol. 9035. International Society for Optics and Photonics; 2014. p. 90350M.
  • [6] Liu J, Hoffman J, Zhao J, Yao J, Lu L, Kim L, et al. Mediastinal lymph node detection and station mapping on chest ct using spatial priors and random forest. Med Phys 2016;43 (7):4362–74.
  • [7] Seff A, Lu L, Cherry KM, Roth HR, Liu J, Wang S, et al. 2d view aggregation for lymph node detection using a shallow hierarchy of linear classifiers. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2014. p. 544–52.
  • [8] Seff A, Lu L, Barbu A, Roth H, Shin H-C, Summers RM. Leveraging mid-level semantic boundary cues for automated lymph node detection. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2015. p. 53–61.
  • [9] Oda H, Bhatia KK, Oda M, Kitasaka T, Iwano S, Homma H, et al. Automated mediastinal lymph node detection from ct volumes based on intensity targeted radial structure tensor analysis. J Med Imaging 2017;4(4):044502.
  • [10] Raghu M, Schmidt E. A survey of deep learning for scientific discovery; 2020, arXiv:2003.11755.
  • [11] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2014. p. 580–7.
  • [12] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems. 2012;1097–105.
  • [13] Chowdhary K. Natural language processing. Fundamentals of Artificial Intelligence. Springer; 2020. p. 603–49.
  • [14] Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, et al. Temporal segment networks: towards good practices for deep action recognition. European Conference on Computer Vision. Springer; 2016. p. 20–36.
  • [15] Shahdoosti HR, Mehrabi A. Multimodal image fusion using sparse representation classification in tetrolet domain. Digital Signal Process 2018;79:9–22.
  • [16] Wang X, Jiang X, Ding H, Liu J. Bi-directional dermoscopic feature learning and multi-scale consistent decision fusion for skin lesion segmentation. IEEE Trans Image Process 2019;29:3039–51.
  • [17] Dubost F, de Bruijne M, Nardin M, Dalca AV, Donahue KL, Giese A-K, et al. Multi-atlas image registration of clinical data with automated quality assessment using ventricle segmentation. Med Image Anal 2020;101698.
  • [18] Shin H-C, Roberts K, Lu L, Demner-Fushman D, Yao J, Summers RM. Learning to read chest X-rays: recurrent neural cascade model for automated image annotation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. p. 2497–506.
  • [19] Hoogi A, Lambert JW, Zheng Y, Comaniciu D, Rubin DL. A fully-automated pipeline for detection and segmentation of liver lesions and pathological lymph nodes; 2017, arXiv:1703.06418.
  • [20] Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35(5):1285–98.
  • [21] Ma Y, Peng Y. Lymph node detection method based on multisource transfer learning and convolutional neural network. Int J Imaging Syst Technol 2020;30(2):298–310.
  • [22] Tekchandani H, Verma S, Londhe ND. Mediastinal lymph node malignancy detection in computed tomography images using fully convolutional network. Biocybern Biomed Eng 2020;40(1):187–99.
  • [23] Gao Y, Zhang Z-D, Li S, Guo Y-T, Wu Q-Y, Liu S-H, et al. Deep neural network-assisted computed tomography diagnosis of metastatic lymph nodes from gastric cancer. Chin Med J 2019;132(23):2804.
  • [24] Peng H, Peng Y. Spatio-temporal context based recurrent visual attention model for lymph node detection. Int J Imaging Syst Technol 2020.
  • [25] Chen L, Zhou Z, Sher D, Zhang Q, Shah J, Pham N-L, et al. Combining many-objective radiomics and 3d convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer. Phys Med Biol 2019;64(7):075011.
  • [26] Zhao X, Wang X, Xia W, Li Q, Zhou L, Li Q, et al. A cross-modal 3d deep learning for accurate lymph node metastasis prediction in clinical stage t1 lung adenocarcinoma. Lung Cancer 2020.
  • [27] Cherry KM, Wang S, Turkbey EB, Summers RM. Abdominal lymphadenopathy detection using random forest. Medical Imaging 2014: Computer-Aided Diagnosis, vol. 9035. International Society for Optics and Photonics; 2014. p. 90351G.
  • [28] Roth HR, Lu L, Seff A, Cherry KM, Hoffman J, Wang S, et al. A new 2. 5 d representation for lymph node detection using random sets of deep convolutional neural network observations. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2014. p. 520–7.
  • [29] Lai H, Chen W, Fu H. A new double-sampling method for mediastinal lymph nodes detection by deep conventional neural network. 2018 Chinese Control And Decision Conference (CCDC). IEEE; 2018. p. 6286–90.
  • [30] Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal 2017;35:18–31.
  • [31] Debats OA, Litjens GJ, Huisman HJ. Lymph node detection in mr lymphography: false positive reduction using multi-view convolutional neural networks. PeerJ 2019;7:e8052.
  • [32] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018. p. 7132–41.
  • [33] Pang Y, Wang T, Anwer RM, Khan FS, Shao L. Efficient featurized image pyramid network for single shot detector. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 7336–44.
  • [34] Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 2015;35(5):1170–81.
  • [35] Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The cancer imaging archive (tcia): maintaining and operating a public information repository. J Digital Imaging 2013;26(6):1045–57.
  • [36] Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning; 2016, arXiv:1602.07261.
  • [37] Li X, Wang W, Hu X, Yang J. Selective kernel networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 510–9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24bfdf85-cb57-4d63-9346-6baed176a200
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.