PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hindcasting global temperature by evolutionary computation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Interpretation of changes of global temperature is important for our understanding of the climate system and for our confidence in projections for the future. Massive efforts have been devoted to improve the accuracy of reproducing the global temperature by the available climate models, but the hindcasts are still inaccurate. Notwithstanding the need to further advance climate models, one may consider data-driven approaches, providing practically useful results in a simpler and faster way. Without assuming any prior knowledge about physics and without imposing a model structure that encapsulates the existing knowledge about the underlying processes, we hindcast global temperature by automatically identified evolutionary computation models. We use 60 years of records of global temperature and climate drivers, with training and testing periods being 1950–1999 and 2000–2009, respectively. This paper demonstrates that the global temperature observed in the past is mimicked with reasonably good accuracy. Evolutionary computation holds promise for modeling the global climate system, which looks hopelessly complex in classical perspective.
Czasopismo
Rocznik
Strony
732--751
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
  • Institute of Computing Science, Poznań University of Technology, Poznań, Poland
  • Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Poznań, Poland
autor
  • Institute of Computing Science, Poznań University of Technology, Poznań, Poland
Bibliografia
  • Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann (2011), Earth’s energy imbalance and implications, Atmos. Chem. Phys. 11, 13421-13449, DOI: 10.5194/acp-11-13421-2011.
  • Hegerl, G.C., F.W. Zwiers, P. Braconnot, N.P. Gillett, C. Luo, J.A. Marengo Orsini, N. Nicholls, J.E. Penner, and P.A. Stott (2007), Understanding and attributing climate change. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.), Climate Change 2007: The Physical Science Basis, 10th Session of Working Group I of the IPCC, February 2007, Paris, France, Cambridge University Press, Cambridge , 663-745.
  • IPCC (Intergovernmental Panel on Climate Change) (2007), Summary for policymakers. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.), Climate Change 2007: The Physical Science Basis, 10th Session of Working Group I of the IPCC, February 2007, Paris, France, Cambridge University Press, Cambridge, http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf.
  • Koza, J.R., M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, and G. Lanza (2003), Genetic Programming IV: Routine Human-Competitive Machine Intelligence, Kluwer Academic Publ., Hingham, URL http://www.genetic-programming. org/gpbook4toc.html.
  • Krawiec, K., and B. Wieloch (2010), Automatic generation and exploitation of related problems in genetic programming. In: IEEE Congress on Evolutionary Computation, IEEE Press, Barcelona, DOI: 10.1109/CEC.2010.5586120.
  • Kundzewicz, Z.W., and S. Huang (2010), Seasonal temperature extremes in Potsdam, Acta Geophys. 58, 6, 1115-1133, DOI: 10.2478/s11600-010-0026-5.
  • Kundzewicz, Z.W., and E.Z. Stakhiv (2010), Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrol. Sci. J. 55, 7, 1085-1089, DOI: 10.1080/02626667.2010.513211.
  • Lean, J.L., and D.H. Rind (2008), How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006, Geophys. Res. Lett. 35, 18, L18701, DOI: 10.1029/2008GL034864.
  • Meehl, G.A., W.M. Washington, C.M. Ammann, J.M. Arblaster, T.M.L. Wigley, and C. Tebaldi (2004), Combinations of natural and anthropogenic forcings in twentieth-century climate, J. Climate 17, 19, 3721-3727, DOI: 10.1175/1520-0442(2004)017<3721:CONAAF>2.0.CO;2.
  • Myhre, G., A. Myhre, and F. Stordal (2001), Historical evolution of radiative forcing of climate, Atmos. Environ. 35, 13, 2361-2373, DOI: 10.1016/S1352-2310(00)00531-8.
  • Schmidt, M., and H. Lipson (2009), Distilling free-form natural laws from experimental data, Science 324, 5923, 81-85, DOI: 10.1126/science. 1165893.
  • Shahid, S., M. Hasan, and R.U. Mondal (2007), Modeling monthly mean maximum temperature using genetic programming, Int. J. Soft Comput. 2, 5, 612-616.
  • Stanisławska, K., K. Krawiec, and Z.W. Kundzewicz (2012), Modeling global temperaturę changes with genetic programming, Comput. Math. Appl. 64, 12, 3717-3728, DOI: 10.1016/j.camwa.2012.02.049.
  • Trenberth, K. (2010), More knowledge, less certainty, Nature Reports Climate Change 2, 20, DOI: 10.1038/climate.2010.06.
  • Tung, C.-P., T.-Y. Lee, Y.-C.E. Yang, and Y.-J. Chen (2009), Application of genetic programming to project climate change impacts on the population of Formosan Landlocked Salmon, Environ. Modell. Softw. 24, 9, 1062-1072, DOI: 10.1016/j.envsoft.2009.02.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24bf0114-bab6-47a9-ac1b-513b43744f53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.