Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research characterizes a natural zeolitic-rich tuff from Yemen (Al-Ahyuq area) and its potential in environmental applications. A total of 40 zeolite samples of Al-Ahyuq area were selected and fully characterized by a variety technique to obtain the mineralogical and physicochemical parameters. Our results show that the purities of zeolite minerals range from 78 to ~100% zeolite. Clinoptilolite and mordenite are the major mineral zeolite whereas heulandite and stilbite occur in minor amounts present in the zeolite deposit. Accessory minerals include quartz, illite, mica, feldspar, kaolinite, and smectite. In addition, the chemical compositions of Al-Ahyuq zeolitic tuffs are found to be comparable with other zeolites compositions of high economic value in the world. Moreover, its environment application was also discussed in this paper.
Czasopismo
Rocznik
Tom
Strony
157--166
Opis fizyczny
Bibliogr. 30, rys., tab.
Twórcy
autor
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
- Engineering Research Center of Nano-Geomaterial of Education Ministry, China University of Geosciences, Wuhan 430074, China
- Geological Survey and Mineral Resources Board, Ministry of Oil and Minerals, Sana’a, Yemen
autor
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
autor
- College of Engineering, University of Basrah, Basrah, Iraq
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
autor
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
autor
- Engineering Research Center of Nano-Geomaterial of Education Ministry, China University of Geosciences, Wuhan 430074, China
autor
- Geological Survey and Mineral Resources Board, Ministry of Oil and Minerals, Sana’a, Yemen
Bibliografia
- 1. Ackley, M.W., Rege, S.U. and Saxena, H., 2003. Application of natural zeolites in the purification and separation of gases. Microporous and Mesoporous Materials, 61(1–3), 25–42.
- 2. Alpat, S.K., Özbayrak, Ö., Alpat, Ş. and Akçay, H., 2008. The adsorption kinetics and removal of cationic dye, Toluidine Blue O, from aqueous solution with Turkish zeolite. Journal of hazardous materials, 151(1), 213–220.
- 3. Alshameri A., 2015. Research on Yemeni and Huludao Zeolite as Adsorbent Material for NH4+ and PO43-.Thesis. China University of Geosciences.
- 4. Alshameri, A., He, H., Dawood, A.S. and Zhu, J.I.A.N.X.I., 2017. Simultaneous removal of NH4+ and PO43 from simulated reclaimed waters by modified natural zeolite. Preparation, characterization and thermodynamics. Environment Protection Engineering, 43(4).
- 5. Alshameri, A., Ibrahim, A., Assabri, A.M., Lei, X., Wang, H. and Yan, C., 2014. The investigation into the ammonium removal performance of Ye meni natural zeolite: Modification, ion exchange mechanism, and thermodynamics. Powder Technology, 258, 20–31.
- 6. Bowman, R.S., 2003. Applications of surfactant-modified zeolites to environmental remediation. Microporous and mesoporous materials, 61(1–3), 43–56.
- 7. Breck, D.W., 1984. Zeolite molecular sieves: structure, chemistry and use. Krieger.
- 8. Campos, V. and Buchler, P.M., 2007. Anionic sorption onto modified natural zeolites using chemical activation. Environmental geology, 52(6), 1187–1192.
- 9. Chen, J. and Poon, C.S., 2009. Photocatalytic construction and building materials: from fundamentals to applications. Building and environment, 44(9), 1899–1906.
- 10. Chmielewská, E., Jesenák, K. and Gáplovská, K., 2003. Arsenate and chromate removal with cationic surfactant-loaded and cation-exchanged clinoptilolite-rich tuff vs montmorillonite. Collection of Czechoslovak chemical communications, 68(4), 823–836.
- 11. Du, Q., Liu, S., Cao, Z. and Wang, Y., 2005. Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separation and purification technology, 44(3), 229–234.
- 12. Feng, N.Q. and Peng, G.F., 2005. Applications of natural zeolite to construction and building materials in China. Construction and Building Materials, 19(8), 579–584.
- 13. Flanigen, E.M., Jansen, J.C. and van Bekkum, H. eds., 1991. Introduction to Zeolite Science and Practice (Vol. 58). Elsevier.
- 14. Haghseresht, F., Wang, S. and Do, D.D., 2009. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Applied Clay Science, 46(4), 369–375.
- 15. Huo, H., Lin, H., Dong, Y., Cheng, H., Wang, H. and Cao, L., 2012. Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite. Journal of hazardous materials, 229, 292–297.
- 16. Jacobs, P.A., Flanigen, E.M., Jansen, J.C. and van Bekkum, H., 2001. Introduction to zeolite science and practice (Vol. 137). Elsevier.
- 17. Jentys, A. and Lercher, J.A., 2001. Techniques of zeolite characterization. Studies in Surface Science and Catalysis, Vol. 137, 345–386.
- 18. KesraouiOuki, S., Cheeseman, C.R. and Perry, R., 1994. Natural zeolite utilisation in pollution control: A review of applications to metals’ effluents. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 59(2), 121–126.
- 19. Mena-Duran, C.J., Kou, M.S., Lopez, T., AzamarBarrios, J.A., Aguilar, D.H., Dominguez, M.I., Odriozola, J.A. and Quintana, P., 2007. Nitrate removal using natural clays modified by acid thermoactivation. Applied Surface Science, 253(13), 5762–5766.
- 20. Moussavi, G., Talebi, S., Farrokhi, M. and Sabouti, R.M., 2011. The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chemical Engineering Journal, 171(3), 1159–1169.
- 21. Nguyen, M.L. and Tanner, C.C., 1998. Ammonium removal from wastewaters using natural New Zealand zeolites. New Zealand Journal of Agricultural Research, 41(3), 427–446.
- 22. Papaioannou, D., Katsoulos, P.D., Panousis, N. and Karatzias, H., 2005. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: a review. Microporous and mesoporous materials, 84(1–3), 161–170.
- 23. Polat, E., Karaca, M., Demir, H. and Onus, A.N., 2004. Use of natural zeolite (clinoptilolite) in agriculture. Journal of fruit and ornamental plant research, 12(1), 183–189.
- 24. Rožić, M., Cerjan-Stefanović, Š., Kurajica, S., Vančina, V. and Hodžić, E., 2000. Ammoniacal nitrogen removal from water by treatment with clays and zeolites. Water Research, 34(14), 3675–3681.
- 25. Schultz Grafisk, 2009. Zeolite in Yemen, Exploration and mining in Yemen by Yemen Geological Survey and Mineral Resources Board, Yemen.
- 26. Taffarel, S.R. and Rubio, J., 2009. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Minerals Engineering, 22(4), 336–343.
- 27. Townsend, R.P. and Loizidou, M., 1984. Ion exchange properties of natural clinoptilolite, ferrierite and mordenite: 1. Sodium–ammonium equilibria. Zeolites, 4(2), 191–195.
- 28. Tschernich, R.W., 1992. Zeolites of the world, pp. 563.
- 29. Wang, S. and Peng, Y., 2010. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11–24.
- 30. Wang, S. and Zhu, Z.H., 2006. Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution. Journal of hazardous materials, 136(3), 946–952.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24b88628-8e9f-46de-92e4-6ccf41d6823e