PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of reducing the number of solid fuel devices in Kraków in 2012–2018 on air quality

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study evaluates the impact of reducing emissions from solid-fuel heating devices on PM10 concentrations in Kraków, using data from 2012, 2015, and 2018. The AROME/MM5/CALMET/ CALPUFF modelling system (Scire et al. 2000a,b) was employed to estimate PM10 concentrations resulting solely from use of solid-fuel furnaces and boiler houses under two distinct meteorological scenarios — one representing a relatively cold year (2012) and another a relatively warm year (2018). The modelling was performed on a high-resolution 100 m grid and generated estimates of daily and annual average PM10 concentrations, as well as maximum daily values. By comparing the results for the three years, the ecological effect defined as the reduction in annual average PM10 concentrations over the periods 2012–2015, 2015–2018, and 2012–2018 was quantified. Notably, eliminating solidfuel heating sources between 2015 and 2018 produced a fourfold reduction in area-averaged annual PM10 concentrations from 25.8 μg/m³ in 2012 to 5.6 μg/m³ in 2018 in the cold meteorological year CY (2012) and from 22.8 μg/m³ in 2012 to 5 μg/m³ in 2018 year in the warm meteorological year WY (2018). Moreover, all daily averages fell below 27 μg/m³, and the maximum daily PM10 concentrations exceeded on 10% of the city area — which reached 254 μg/m³ (170 μg/m³ in a warm year) in 2015 — declined to 66 μg/m³ (44 μg/m³ in a warm year) by 2018 in a cold meteorological scenario. These results demonstrate that targeted measures to reduce solid-fuel emissions can substantially improve urban air quality.
Rocznik
Strony
23--42
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Institute of Meteorology and Water Management – National Research Institute, Warsaw, Poland
  • Institute of Meteorology and Water Management – National Research Institute, Warsaw, Poland
  • Institute of Meteorology and Water Management – National Research Institute, Warsaw, Poland
Bibliografia
  • [1] Bajorek-Zydroń, K., Wężyk, P. (eds), (2016). Atlas pokrycia terenu i przewietrzania Krakowa. MONITAIR – “Zintegrowany system monitorowania danych przestrzennych dla poprawy jakości powietrza w Krakowie”. Kraków: Urząd Miasta Krakowa.
  • [2] Bayraktar, O.M., Mutlu, A., (2024). Analyses of industrial air pollution and long-term health risk using different dispersion models and WRF physics parameters. Air Qual Atmos Health, 17, 2277–2305 (2024). https://doi.org/10.1007/s11869-024-01573-8
  • [3] Brauer, M. et al., (2007). Air pollution and development of asthma, allergy and infections in a birth cohort. European Respiratory Journal, 29(5), 879–888. DOI: 10.1183/09031936.00083406
  • [4] Brook, R.D. et al., (2010). Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbec
  • [5] CIBSE TM41 (2006). Degree-days: theory and application. The Chartered Institution of Building Services Engineers 222 Balham High Road, London SW12 9BS.
  • [6] EIONET, (2022). https://cdr.eionet.europa.eu/pl/un/clrtap/inventories/envzco4iq/Annex_I_1990-2022.xlsx/manage_document. [15.01.2024]
  • [7] DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 May 2008 on ambient air quality and cleaner air for Europe.
  • [8] Dresser, A.L. & Huizer, R.D., (2011). CALPUFF and AERMOD model validation study in the near field: Martins Creek revisited. J. Air Waste Manage. Assoc., 61, 647–659. https://doi.org/10.3155/1047-3289.61.6.647
  • [9] Ghannam, K., El-Fadel, M., (2013). Emissions characterization and regulatory compliance at an industrial complex: an integrated MM5/CALPUFF approach. Atmos. Environ., 69, 156–169, DOI: 10.1016/j.atmosenv.2012.12.022
  • [10] Godłowska, J., (2019). The impact of meteorological conditions on air quality in Krakow. Comparative research and an attempt at a model approach. Series: Monografie Instytutu Meteorologii i Gospodarki Wodnej Państwowego Instytutu Badawczego, p. 104 (in Polish). (https://www.imgw.pl/sites/default/files/2019-12/wplyw-warunkow-meteorologicznych-na-jakosc-powietrza-wkrakowie.pdf)
  • [11] Godłowska, J. & Kaszowski, W., (2019). Testing various morphometric methods to determine vertical profile of wind speed in Krakow, Poland. Boundary-Layer Meteorology. 172, 107–132. https://doi.org/10.1007/s10546-019-00440-9
  • [12] Godłowska, J., Kaszowski, K., Kaszowski, W., (2022). Application of the FAPPS system based on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser Poland. Archives of Environmental Protection, 48, 3, 109–117. DOI 10.24425/aep.2022.142695 PL ISSN 2083-4772
  • [13] Holnicki, P., Kaluszko, A., Trapp, W., (2016). An urban scale application and validation of the CALPUFF model. Atmospheric Pollution Research, 7(3), 393–402. https://doi.org/10.1016/j.apr.2015.10.016
  • [14] Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K., Trapp W., (2017). Air quality modeling for Warsaw agglomeration. Arch. Environ. Prot., 43, 48–64, DOI:10.1515/aep-2017-0005
  • [15] Iwanek, J., Kobus, D., Mitosek, G., Parvi, R., (2016). Jakość powietrza w Polsce w roku 2015 w świetle wyników pomiarów prowadzonych w ramach Państwowego Monitoringu Środowiska. Warsaw: IOŚ.
  • [16] Kaszowski, K., Godłowska, J., Kaszowski, W., (2023) Influence of point sources of pollution on air quality in Małopolska – First tests of a new version of Forecasting of Air Pollution Propagation System. Zeszyty Naukowe SGSP, No. 85. DOI:10.5604/01.3001.0016.3279
  • [17] MacIntyre, E.A. et al., (2011). Residential air pollution and otitis media during the first two years of life. Epidemiology, 22(1), 81–89. DOI: 10.1097/EDE.0b013e3181fdb60f
  • [18] Nielsen, Ole-Kenneth, (2013). EMEP/EEA air pollutant emission inventory guidebook 2013. Technical guidance to prepare national emission inventories. European Environment Agency.
  • [19] Oleniacz, R., Rzeszutek, M., (2018). Intercomparison of the CALMET/CALPUFF modeling system for selected horizontal grid resolutions at a local scale: a case study of the MSWI Plant in Krakow, Poland. Appl. Sci., 8, 1–19. DOI: 10.3390/app8112301
  • [20] Oleniacz, R., Rzeszutek, M., Bogacki, M., (2016). Impact of use of chemical transformation modules in CALPUFF on the results of air dispersion modelling. Ecological Chemistry and Engineering, S 23(4), 605–620.
  • [21] Pope, C.A. 3rd, Ezzati, M., Dockery, D.W., (2009). Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine, 360(4), 376–386. DOI: 10.1056/NEJMsa0805646
  • [22] PSU/NCAR Mesoscale Modeling System, https://a.atmoswashington.edu/~ovens/newwebpage/mm5-home.html. [26.02.2022]
  • [23] Rückerl, R. et al., (2011). Health effects of particulate air pollution: a review of epidemiological evidence. Inhalation Toxicology, 23(10), 555–592. DOI: 10.3109/08958378.2011.593587
  • [24] Rzeszutek, M., (2019). Parameterization and evaluation of the CALMET/CALPUFF model system in near-field and complex terrain – terrain data, grid resolution and terrain adjustment method. Sci. Total Environ., 689, 31–46.
  • [25] Scire, J.S., Robe, F.R., Fernau, M.E. & Yamartino, R.J., (2000a). A user’s guide for the CALMET Meteorological Model (Version 5.0). Concord, MA: Earth Tech, Inc.
  • [26] Scire, J.S., Strimaitis, D.G. & Yamartino R.J., (2000b). A user’s guide for the CALPUFF Dispersion Model (Version 5.0). Concord, MA: Earth Tech, Inc.
  • [27] Sekula, P., Bokwa, A., Bochenek, B., Zimnoch, M., (2019). Prediction of air temperature in the Polish Western Carpathian Mountains with the ALADIN-HIRLAM numerical weather prediction system. Atmosphere, 10(4), p.186. https://doi.org/10.3390/atmos10040186
  • [28] Sówka, I., Kobus, D., Skotak, K., Zathey, M., Merenda, B., & Paciorek, M., (2019). Assessment of the health risk related to air pollution in selected polish health resorts. Journal of Ecological Engineering, 20(10), 132–145. https://doi.org/10.12911/22998993/113142
  • [29] Stull, R.B., (1988). Mean boundary layer characteristics. In: An introduction to boundary layer meteorology, pp. 1–27. Dordrecht: Springer Netherlands.
  • [30] World Health Organization, (2013). Review of evidence on health aspects of air pollution–REVIHAAP: first results. In: Review of evidence on health aspects of air pollution–REVIHAAP: first results.
  • [31] Xu, X., Wang, C., Wang, P., Chu, Y., Guo, J., Bo, X., Lin, A., (2023) Bioaerosol dispersion and environmental risk simulation: Method and a case study for a biopharmaceutical plant of Gansu province, China. Science of The Total Environment, 860, 160506. https://doi.org/10.1016/j.scitotenv.2022.160506
  • [32] Zhou, H., Gao, B., & Deng, F, (2023). Dust diffusion in large-scale urban construction combining WRF and CALPUFF model – take Xiamen as an example. Journal of Environmental Engineering and Landscape Management, 31(4), 288–306. https://doi.org/10.3846/jeelm.2023.20044
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24b6d8d6-af4a-4e8e-9150-e75dd3cf1894
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.