PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Limestone powder and silica fume performance on slag‑blended PLC plain and self‑consolidating mortars properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mineral admixtures and waste by-products in concrete exhibit economical and environmental benefits, but their cementing and engineering properties should be assessed before practical adoption. In this study, we investigated hydration and physical properties of Self-Consolidating (SCM) and Ordinary (OM) mortars, based on slag-blended Portland limestone cement (PLC), with equivalent water-to-cement ratio (E/C≈ 0.55). The variables were mortar type and mineral admixture type, limestone powder (LP) or silica fume (SF). Therefore, we made two ordinary mortars (OMs), Oref (OPC based) and Oplc (slag PLC based), and two self-consolidating mortars (SCMs), SplcL (limestone based) and SplcS (silica fume based). We assessed compressive strength, sorptivity, hydration heat, thermogravimetric analysis, and SEM images. Results reveal that Oplc exhibits similar to better performance than Oref; blended LP leads to 36% higher mechanical strength, more than 50% carboaluminate in SCMs, and 40% lower heat and rate of hydration, and seems to have packing role and doesn't contribute to more sites’ nucleation; SF is efficient when substituted more than 10%.
Rocznik
Strony
art. no. e26, 2024
Opis fizyczny
Bibliogr. 68 poz., rys., wykr.
Twórcy
autor
  • École Supérieure d’Ingénieurs des Travaux de la Construction (ESITC-Paris), Arcueil, France
  • L2MGC, CY Paris Cergy Université, 9500 Cergy-Pontoise, France
  • L2MGC, CY Paris Cergy Université, 9500 Cergy-Pontoise, France
Bibliografia
  • 1. You-tang Z. Materials substitute evaluation in the production of cement. J Wuhan Univ Technol-Mater Sci Ed. 2002;17:97–8.
  • 2. Mehta PK. Role of pozzolanic and cementious material in sus-tainable development of the concrete industry. ACI Spec Publ.1998;178–1:1–20.
  • 3. Panesar DK, Zhang R. Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials—a review. Constr Build Mater. 2020;251:118866.
  • 4. PCA. PCA outlines environmental, performance case for port-land-limestone cement. 2020.
  • 5. Zhang Z. Study on the structural build-up of cement-groundlimestone pastes and its micro-mechanism. Constr Build Mater.2020;263: 120656.
  • 6. Sharma R, Pandey S. Influence of mineral additives on the hydration characteristics of ordinary Portland cement. CemConcr Res. 1999;29:1525–9.
  • 7. Berodier E, Scrivener K. Understanding the filler effecton the nucleation and growth of C-S-H. J Am Ceram Soc.2014;97:3764–73.
  • 8. Ingram K. Carboaluminate reactions as influenced by limestone additions. In: Klieger RDP, Hooton, editors. Carbonate additions to cement, ASTM STP 1064. Phila. Am. Soc. Test. Mater.;1990. p. 14–23.
  • 9. Lothenbach B. Influence of limestone on the hydration of Port-land cements. Cem Concr Res. 2008;38:848–60.
  • 10. Kakali G. Hydration products of C 3 A, C 3 S and Port-land cement in the presence of CaCO 3. Cem Concr Res.2000;30:1073–7.
  • 11. Moon GD. Effects of the fineness of limestone powder and cement on the hydration and strength development of PLCconcrete. Constr Build Mater. 2017;135:129–36.
  • 12. Poppe A-M, Schutter G. Cement hydration in the presence of high filler contents. Cem Concr Res. 2005;35:2290–9.
  • 13. Kathirvel P. Strength and durability properties of quaternary cement concrete made with fly ash, rice husk ash and limestone powder. Arab J Sci Eng. 2013;38:589–98.
  • 14. Liu S, Yan P. Effect of limestone powder on microstructure of concrete. J Wuhan Univ Technol-Mater Sci Ed. 2010;25:328–31.
  • 15. Moir GK, Kelham S. Developments in the manufacture and use of Portland limestone cement. ACI Spec Publ.1999;172:797–820.
  • 16. Bonavetti V. High-strength concrete with limestone filler cements.ACI Spec Publ. 1999;186:567–80.
  • 17. Péra J. Influence of finely ground limestone on cement hydration.Cem Concr Compos. 1999;21:99–105.
  • 18. Zhao Y, Zhang Y. A review on hydration process and setting time of limestone calcined clay cement (LC3). Solids. 2023;4:24–38.
  • 19. Hooton R. Portland-limestone cement: state-of-the-art report and gap analysis for CSA A 3000. Cement Association of Canada,University of Toronto; 2007.
  • 20. Hansen BS. Portland-limestone cement fineness effects on concrete properties. ACI Mater J. 2020;117:157–68.
  • 21. Rong H, Zhou Z, Peng S, Huang Y, Liang J, Yang X, Shi J, FengY. Effect of ultra-fine limestone powder on leaching resistance of cement mortar. Constr Build Mater. 2023;368: 130422.
  • 22. Marzouki A, Lecomte A. Durability of cementitious composites mixed with various portland limestone cement-cements. ACIMater J. 2017;114:763.
  • 23. Ramezanianpour AA. Influence of various amounts of limestone powder on performance of Portland limestone cement concretes.Cem Concr Compos. 2009;31:715–20.
  • 24. Irassar EF. Mechanical properties and durability of concrete made with portland limestone cement. ACI Spec Publ.2001;202–27:431–50.
  • 25. Soltani A, Tarighat A, Varmazyari M. Calcined marl and condensed silica fume as partial replacement for ordinary Portland cement. Int J Civ Eng. 2018;16:1549–59.
  • 26. Rudić O, Ukrainczyk N, Krüger M, Tritthart J, Juhart J. Efficiency of limestone in clinker-reduced binders: consideration of water-binder ratio, capillary porosity and compressive strength. ConstrBuild Mater. 2023;386: 131594.
  • 27. Arora A. Ternary blends containing slag and interground/blended limestone: Hydration, strength, and pore structure. Constr BuildMater. 2016;102(Part 1):113–24.
  • 28. Çetin C, Erdoğan ST, Tokyay M. Effect of particle size and slag content on the early hydration of interground blended cements.Cem Concr Compos. 2016;67:39–49.
  • 29. Hawileh RA, Abdalla JA, Fardmanesh F, Shahsana P, Khalili A.Performance of reinforced concrete beams cast with different per-centages of GGBS replacement to cement. Arch Civ Mech Eng.2017;17:511–9.
  • 30. Lea FM. The chemistry of cement and concrete. London: EdwardArnold Publishers Limited; 1970.
  • 31. Scrivener KL, Nonat A. Hydration of cementitious materials, pre-sent and future. Cem Concr Res. 2011;41:651–65.
  • 32. Dubovoy VS. Effects of ground granulated blast-furnace slags on some properties of pastes, mortars, and concretes. ASTM SpecTech Publ. 1986;897:29–48.
  • 33. Roy DM, ldorn GM. Hydration structure, and properties of blast furnace slag cements, mortars, and concrete. ACI J.1982;79:444–57.
  • 34. Holland TC. Guide for the use of silica fume in concrete. ACI234R.96 (2000) Report, ACI Com. 236. American Concrete Institute, 2000.
  • 35. Hooton R. Influence of silica fume replacement of cement on physical properties and resistance to sulfate attack, freezing and thawing, and alkali-silica reactivity. ACI Mater J.1993;90:143–51.
  • 36. Hoshino S. XRD/Rietveld analysis of the hydration and strength development of slag and limestone blended cement. J Adv ConcrTechnol. 2006;4:357–67.
  • 37. Kadri EH, Duval R. Effect of ultrafine particles on heat of hydration of cement mortars. ACI Mater J. 2002;99:138–42.
  • 38. Meland I. Influence of condensed silica fume and fly ash on the heat evolution in cement pastes. ACI Spec Publ. 1983;79:665–76.
  • 39. Kadri E. Combined effect of chemical nature and fineness of mineral powders on Portland cement hydration. Mater Struct.2010;43:665–73.
  • 40. Bilek V. Development and properties of concretes with ternary binders. Cem Wapno Beton. 2013;79:343–52.
  • 41. Turkel S, Altuntas Y. The effect of limestone powder, fly ash and silica fume on the properties of self-compacting repair mortars.Sadhana. 2009;34:331–43.
  • 42. Güneyisi E, Gesoğlu M. Properties of self-compacting portland pozzolana and limestone blended cement concretes containing different replacement levels of slag. Mater Struct.2011;44:1399–410.
  • 43. Brunauer S, Copeland L. The chemistry of concrete. Sci Am.1964;210:80–99.
  • 44. Gerry B. Portland cement. London: Thomas Telford; 2011.
  • 45. A.F.N.O.R., EN 197–1. Cement - Part 1: Composition, specifications and conformity criteria for common cements, 2000.
  • 46. Chiker T, Aggoun S, Houari H, Siddique R. Sodium sulfate and alternative combined sulfate/chloride action on ordinary and self-consolidating PLC-based concretes. Constr Build Mater. 2016.https://doi.org/10.1016/j.conbuildmat.2015.12.123.
  • 47. A.F.N.O.R., EN 196–1. Méthodes d’essais des ciments–Partie 1:détermination des résistances mécaniques, AFNOR. 2006.
  • 48. Maage M. Strength and heat development in concrete: Influence of fly ash and condensed silica fume. ACI Spec Publ.1986;91:923–40.
  • 49. Neville AM. Properties of concrete. Trans-Atlantic Publications Indian International, Ed; 2011.
  • 50. Sedran T. Rheologie et rheometrie des betons: Application auxbetons autonivelants, Doctorate Thesis, Ecole Nationale des Pontset Chaussées, 1999.
  • 51. Gonen T, Yazicioglu S. The influence of compaction pores on sorptivity and carbonation of concrete. Constr Build Mater.2007;21:1040–5.
  • 52. A.F.N.O.R., EN 196–9. Standard : Methods for testing cements.2010.
  • 53. El-Jazairi B, Illston J. A simultaneous semi-isothermal method of thermogravimetry and derivative thermogravimetry, and its application to cement pastes. Cem Concr Res. 1977;7:247–57.
  • 54. Zhu W, Bartos P. Permeation properties of self-compacting concrete. Cem Concr Res. 2003;33:921–6.
  • 55. Kadri EH, Duval R. Effect of silica fume on the heat of hydration of high-performance concrete. ACI Spec Publ. 2001;199:635–44.
  • 56. Hooton R. Effects of carbonate additions on heat of hydration and sulfate resistance of Portland cements. In: Klieger P, HootonR, editors. Carbonate additions to cement, 1064. Phila. Am. Soc.Test. Mater.; 1990. p. 73–81.
  • 57. Rahhal V. Role of the filler on Portland cement hydration at earlyages. Constr Build Mater. 2012;27:82–90.
  • 58. Rahhal V. Calorimetric characterization of Portland limestone cement produced by intergrinding. J Therm Anal Calorim.2012;109:153–61.
  • 59. Yılmaz B, Olgun A. Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone. CemConcr Compos. 2008;30:194–201. https:// doi. org/ 10. 1016/j.cemconcomp.2007.07.002.
  • 60. Nocuń-Wczelik W, Trybalska B. Effect of admixtures on the rate of hydration and microstructure of cement paste. Cem WapnoBeton. 2004;6:284–9.
  • 61. Double D, Hellawell A. The solidification of cement. Sci Am.1977;237:82–91.
  • 62. Bazzoni A. Study of early hydration mechanisms of cement bymeans of electron microscopy. EPFL; 2014.
  • 63. Baalbaki M, Sarker S, Aitcin P, Isabelle H. Properties and microstructure of high-performance concretes containing silica fume,slag and fly ash. Spec Publ. 1992;132:921–42.
  • 64. Celik K, Hay R, Hargis CW, Moon J. Effect of volcanic ash poz-zolan or limestone replacement on hydration of Portland cement.Constr Build Mater. 2019;197:803–12.
  • 65. Jennings HM. A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res. 2000;30:101–16.
  • 66. Barnes P, Bensted J. Structure and performance of cements. CRCPress; 2002.
  • 67. Voglis N, Tsvilis S, Kakali G, Chaniotakis E, Meletiou C. Lime-stone, fly ash, slag and natural pozzolana: a comparative study of their effect on the cement properties. In: Modern concrete materials: binders, additions and admixtures: proceedings of the international conference held at the University of Dundee, Scotland, UK on 8-10 September 1999. Thomas Telford; 1999. p.203–10.
  • 68. Zhang L, Ma N, Wang Y, Han B, Cui X, Yu X, Ou J. Study on the reinforcing mechanisms of nano silica to cement-based materials with theoretical calculation and experimental evidence. J ComposMater. 2016;50:4135–46.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24b434c7-7206-48ef-b112-f4ae77fbb20c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.