PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of thermal cycling on the tensile behavior of Cf/Al fiber metal laminates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this research work was to estimate the effect of thermal cycling on the tensile behavior of CARALL composites. Fiber metal laminates (FMLs), based on 2D woven carbon fabric and 2024-T3 Alclad aluminum alloy sheet were manufactured by pressure molding technique followed by hand layup method. Before fabrication, aluminum sheets were anodized with phosphoric acid to produce a micro porous alumina layer on surface. This microporous layer is beneficial to produce a strong bond between the metal and fiber surfaces in FMLs. The effect of thermal cycling (-65 to +70ºC) on the tensile behavior of Cf/Al based FML was studied. Tensile strength was increased after 10 thermal cycles, but it was decreased slightly to some extent after 30 and 50 thermal cycles. Tensile modulus also show similar behavior as that of tensile strength.
Twórcy
autor
  • University of Engineering and Technology, MS Metallurgy and Materials Engineering, 47080 Taxila, Pakistan
autor
  • University of Engineering and Technology, MS Metallurgy and Materials Engineering, 47080 Taxila, Pakistan
autor
  • University of Engineering and Technology, MS Metallurgy and Materials Engineering, 47080 Taxila, Pakistan
autor
  • University of Engineering and Technology, MS Metallurgy and Materials Engineering, 47080 Taxila, Pakistan
  • ali.nasir@uettaxila.edu.pk
autor
  • University of Engineering and Technology, MS Metallurgy and Materials Engineering, 47080 Taxila, Pakistan
Bibliografia
  • 1. Asghar, W., et al., Investigation of fatigue crack growth rate in CARALL, ARALL and GLARE. Fatigue & Fracture of Engineering Materials & Structures, 2017.
  • 2. Botelho, E.C., et al., A review on the development and properties of conti-nuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Materials Research, 2006. 9(3): p. 247-256.
  • 3. da Costa, A.A., et al., The effect of thermal cycles on the mechanical properties of fibermetal laminates. Materials & Design, 2012. 42: p. 434-440.
  • 4. Daguang, L., et al., Effect of thermal cycling on the mechanical properties of Cf/Al composites. Materials Science and Engineering: A, 2013. 586: p. 330-337.
  • 5. Gao, Y., et al., Effect of vacuum thermo-cycling on physical properties of unidirectional M40J/AG- 80 composites. Composites Part B: Engi-neering, 2005. 36(4): p. 351-358.
  • 6. Grammatikos, S.A., et al., Thermal cycling effects on the durability of a pultruded GFRP material for off-shore civil engineering structures. Composite Structures, 2016. 153: p. 297-310.
  • 7. Khalili, S.M.R., M. Najafi, and R. Eslami-Farsani, Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers. Mechanics of Composite Materials, 2017: p. 1-10.
  • 8. Kim, R.Y., A.S. Crasto, and G.A. Schoeppner, Dimensional stability of composite in a space thermal environment. Composites science and tech-nology, 2000. 60(12): p. 2601-2608.
  • 9. Li, H., et al., The effect of thermal fatigue on the mechanical properties of the novel fiber metal laminates based on aluminum–lithium alloy. Composites Part A: Applied Science and Manufacturing, 2016. 84: p. 36-42.
  • 10. Nayfeh, A.H., Thermomechanically induced interfacial stresses in fibrous composites. Fibre Science and Technology, 1977. 10(3): p. 195-209.
  • 11. Okba, S.H., et al., Effect of thermal exposure on the mechanical properties of polymer adhesives. Construction and Building Materials, 2017. 135: p. 490-504.
  • 12. Qaiser, H., et al., Optimization of interlaminar shear strength behavior of anodized and unanodized ARALL composites fabricated through VAR-TM process. International Journal of Material Forming, 2015. 8(3): p. 481-493.
  • 13. Qin, Y. and S. He, Effects of thermal–mechanical cycling on microstructure and tensile properties of B/Al composite. Materials Science and Engin-eering: A, 2008. 472(1): p. 130-135.
  • 14. Rawal, S.P., Metal-matrix composites for space applications. JOM Jour-nal of the Minerals, Metals and Mat-erials Society, 2001. 53(4): p. 14-17.
  • 15. Rouquie, S., et al., Thermal cycling of carbon/ epoxy laminates in neutral and oxidative environments. Composites Science and Technology, 2005. 65(3): p. 403-409.
  • 16. Russell-Stevens, M., R. Todd, and M. Papakyriacou, The effect of thermal cycling on the properties of a carbon fibre reinforced magnesium compo-site. Materials Science and Enginee-ring: A, 2005. 397(1): p. 249-256.
  • 17. Wegman, R.F. and J. Van Twisk, Surface preparation techniques for adhesive bonding. 2012: William Andrew.
  • 18. Yu, Q., et al., Effects of vacuum thermal cycling on mechanical and physical properties of high perform-ance carbon/bismaleimide composite. Materials Chemistry and Physics, 2011. 130(3): p. 1046-1053.
  • 19. Zhao, M., et al., Effects of thermal cycling on mechanical properties of AlNp/Al composite. Materials Lett-ers, 2004. 58(12): p. 1899-1902.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24b159ac-cd3d-49c1-8506-d6d6f4a93412
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.