Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, p-type Bi0.5Sb1.5Te3 based nanocomposites with addition of different weight percentages of Ga2O3 nanoparticles are fabricated by mechanical milling and spark plasma sintering. The fracture surfaces of all Bi0.5Sb1.5Te3 nanocomposites exhibited similar grain distribution on the entire fracture surface. The Vickers hardness is improved for the Bi0.5Sb1.5Te3 nanocomposites with 6 wt% added Ga2O3 due to exhibiting fine microstructure, and dispersion strengthening mechanism. The Seebeck coefficient of Bi0.5Sb1.5Te3 nanocomposites are significantly improved owing to the decrease in carrier concentration. The electrical conductivity is decreased rapidly upon the addition of Ga2O3 nanoparticle due to increasing carrier scattering at newly formed interfaces. The peak power factor of 3.24 W/mK2 is achieved for the base Bi0.5Sb1.5Te3 sintered bulk. TheBi0.5Sb1.5Te3 nanocomposites show low power factor than base sample due to low electrical conductivity.
Wydawca
Czasopismo
Rocznik
Tom
Strony
993--997
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, Cheonan, Chungnam, 330-717, Korea
autor
autor
- Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, Cheonan, Chungnam, 330-717, Korea
Bibliografia
- [1] F. J. DiSalvo, Science 285, 703 (1999).
- [2] D. M. Rowe, Thermoelectric Handbook: Macro to Nano, Taylor & Francis Group, 2006.
- [3] Y. Lan, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 9, 1419 (2009).
- [4] H. P. Ha, D.B. Hyun, J.Y. Byun, Y.J. Oh, E.P. Yoon, J. Electronic. Mater 37, 4691 (2002).
- [5] H. S. Kim, B. Madavali, T.J. Eom, C.M. Kim, J.M. Koo, T.H. Lee, S.J. Hong, Arch. Metall. Mater. 60, 1235 (2015).
- [6] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008).
- [7] W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C.M. Brown, Q. Zhang, T.M. Tritt, Nano Lett. 10, 3283-3289 (2010).
- [8] B. Paul, V.A. Kumar, P. Banerji, J. Appl. Phys. 108, 064322 (2010).
- [9] L. D. Zhao, B.P. Zhang, J. F. Li, M. Zhou, W. S. Liu, J. Liu, J. Alloys Compd. 455, 259 (2008).
- [10] M. D. Santial, N. Tandon, J. D. Albrecht, Appl. Phys. Lett. 107, 041907 (2015).
- [11] B. Madavali, H. S. Kim, K. H. Lee, I. Yukihiro, F. Gascoin, S.J. Hong, Mater. Des. 112,485 (2016).
- [12] S. J. Hong, B.S. Chun, Mater. Res. Bull. 38, 599 (2003)
- [13] S. J. Jung, S.Y. Park, B.K. Kim, B. Kwon, S.K. Kim, H.H. Park, D.I. Kim, J.Y. Kim, D. Bin Hyun, J.S. Kim, S.H. Baek, Acta Mater. 97, 68 (2015).
- [14] F. Li, X. Huang, Z. Sun, J. Ding, J. Jiang, W. Jiang, L. Chen, J. Alloys Compd. 509, 4769 (2011).
- [15] L. D. Zhao, B.P. Zhang, J.F. Li, et al., M Zhou, W. S. Liu, J. Liu, J. Alloys Comp. 455, 259 (2008).
- [16] H. R. Williams, R.M. Ambrosi, K. Chen, U. Friedman, H. Ning, M.J. Reece, M.C. Robbins, K. Simpson, K. Stephenson, J. Alloys Comp. 626, 368 (2015).
- [17] K. T. Kim, T. S. Lim, G.H. Ha, Reviews on Adv. Mater. Sci. 28, 196 (2011).
- [18] B. Madavali, H.S. Kim, K.H. Lee, H.T. Son, S.J. Hong, Int. J. Appl. Ceram. Technol. 13, 252 (2016).
- [19] K. T. Kim, G. H. Ha, J. Nanometer. 1, 2013 (2013).
- [20] Y. H. Yeo, T. S. Oh, Mater. Res. Bull. 58, 54 (2014).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24ae091d-474b-486f-8e39-b1e3e662be7f