Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the authors analyse the propagation of surface Love waves in an elastic layered waveguide (elastic guiding layer deposited on an elastic substrate) covered on its surface with a Newtonian liquid layer of finite thickness. By solving the equations of motion in the constituent regions (elastic substrate, elastic surface layer and Newtonian liquid) and imposing the appropriate boundary conditions, the authors established an analytical form of the complex dispersion equation for Love surface waves. Further, decomposition of the complex dispersion equation into its real and imaginary part, enabled for evaluation of the phase velocity and attenuation dispersion curves of the Love wave. Subsequently, the influence of the finite thickness of a Newtonian liquid on the dispersion curves was evaluated. Theoretical (numerical) analysis shows that when the thickness of the Newtonian liquid layer exceeds approximately four penetration depths 4δ of the wave in a Newtonian liquid, then this Newtonian liquid layer can be regarded as a semi-infinite half-space. The results obtained in this paper can be important in the design and optimization of ultrasonic Love wave sensors such as: biosensors, chemosensors and viscosity sensors. Love wave viscosity sensors can be used to assess the viscosity of various liquids, e.g. liquid polymers.
Wydawca
Czasopismo
Rocznik
Tom
Strony
19--27
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
- 1. Achenbach J. D. (1973), Wave propagation in elastic solids, North-Holland, Amsterdam.
- 2. Auld B. A. (1990), Acoustic fields and waves in solids, vol. II, Krieger Publishing Company, Florida.
- 3. Ballantine D. S. et al. (1997), Acoustic wave sensors. theory, design, and physico-chemical applications, Academic Press, San Diego.
- 4. Goto M., Yatsuda H., Kondoh J. (2015), Effect of viscoelastic film for shear horizontal surface acoustic wave on quartz, Japanese Journal of Applied Physics, 54 (7S1): 07HD02 (5 pages), doi: 10.7567/jjap.54.07hd02.
- 5. Hong Z., Ligang Z., Jiecai H., Yumin Z. (2014), Love wave in an isotropic homogeneous elastic half-space with a functionally graded cap layer, Applied Mathematics and Computations, 231: 93-99, doi: 10.1016/j.amc.2013.12.167.
- 6. Kiełczyński P., Szalewski M. (2011), An inverse method for determining the elastic properties of thin layers using Love surface waves, Inverse Problems in Science and Engineering, 19 (1): 31-43, doi: 10.1080/17415977.2010.531472.
- 7. Kiełczyński P., Szalewski M., Balcerzak A. (2012), Effect of viscous loading on Love wave propagation, International Journal of Solids and Structures, 49 (17): 2314-2319, doi: 10.1016/j.ijsolstr.2012.04.030.
- 8. Kiełczyński P. et al. (2014a), Application of ultrasonic wave celerity measurement for evaluation of physicochemical properties of olive oil at high pre-ssure and various temperatures, LWT – Food Science and Technology, 57: 253-259.
- 9. Kiełczyński P., Szalewski M., Balcerzak A. (2014b), Inverse procedure for simultaneous evaluation of viscosity and density of Newtonian liquids from dispersion curves of Love waves, Journal of Applied Physics, 116 (4): 044902 (7 pages), doi: 10.1063/1.4891018.
- 10. Kiełczyński P. et al. (2014c), Determination of physicochemical properties of diacylglycerol oil at high pressure by means of ultrasonic methods, Ultrasonics, 54: 2134-2140, doi: 10.1016/j.ultras.2014.06.013.
- 11. Kiełczyński P., Szalewski M., Balcerzak A., Wieja K. (2015), Group and phase velocity of Love waves propagating in elastic functionally graded materials, Archives of Acoustics, 40 (2): 273-281, doi: 10.1515/aoa-2015-0030.
- 12. Kiełczyński P. (2018), Direct Sturm-Liouville problem for surface Love waves propagating in layered viscoelastic waveguides, Applied Mathematical Modelling, 53: 419-432, doi: 10.1016/j.apm.2017.09.013.
- 13. Liu J. (2014), A simple and accurate model for Love wave based sensors: Dispersion equation and mass sensitivity, AIP Advances, 4 (7): 077102 (11 pages), doi: 10.1063/1.4886773.
- 14. Qian Z-H., Jin F., Li P., Hirose S. (2010), Bleustein-Gulyaev waves in 6 mm piezoelectric materials loaded with a viscous liquid layer of finite thickness, International Journal of Solids and Structures, 47(25-26): 3513-3518, doi: 10.1016/j.ijsolstr.2010.08.025.
- 15. Rocha Gaso M. I., Jiménez Y., Francis L. A., Arnau A. (2013), Love wave biosensors: a review, [in:] State of the Art in Biosensors – General Aspects, T. Rinken [Ed.], Chapter 11, pp. 277-310, IntechOpen, London.
- 16. Rose J. L. (2014), Ultrasonic guided waves in solid media, Cambridge University Press, Cambridge.
- 17. Royer D., Dieulesaint E. (2000), Elastic waves in solids, Springer, Berlin.
- 18. Wang L., Liu J., He S. (2015), The development of Love wave-based humidity sensors incorporating multiple layers, Sensors, 15 (4): 8615-8623, doi: 10.3390/s150408615.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24ae01f0-2eb7-422e-a494-f69e94588c13