Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Industry 4.0 Concept assumes that the majority of industry’s resources will be able to self-diagnose; this will, therefore, enable predictive maintenance. Numerically controlled machines and devices involved in technological processes should, especially, have the facility to predict breakdown. In the paper, the concept of a predictive maintenance system for a vacuum furnace is presented. The predictive maintenance system is based on analysis of the operating parameters of the system and on the algorithms for identifying emergency states in the furnace. The algorithms will be implemented in the monitoring sub-system of the furnace. Analysis of the operating parameters of vacuum furnaces, recorded in the Cloud will lead to increased reliability and reduced service costs. In the paper, the research methodology for identification of the critical parameters of the predictive maintenance system is proposed. Illustrated examples of the thermographic investigation of a vacuum furnace are given.
Wydawca
Czasopismo
Rocznik
Tom
Strony
48--54
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
autor
- University of Zielona Góra, Faculty of Mechanical Engineering, Licealna 9, 65-417 Zielona Góra, Poland
autor
- University of Zielona Góra, Faculty of Mechanical Engineering, Poland
autor
- Seco/Warwick S.A., Poland
Bibliografia
- [1] Sakib N., Wuest T., Challenges and opportunities of condition-based predictive maintenance: a review, Procedia CIRP, 78, 267–272, 2018.
- [2] Tao F., Qi Q., Liu A., Kusiak A., Data-driven ‘Smart’ manufacturing, Journal of Manufacturing Systems, 48, 157–169, 2018.
- [3] Dubey R., Gunasekaran A., Childe S.J., Wamba S.F., Papadopoulos T., The impact of big data on world-class sustainable manufacturing, International Journal of Advanced Manufacturing Technology, 84, 631–45, 2016.
- [4] Kusiak A., ‘Smart’ manufacturing must embrace big data, Nature, 544(7648), 23–5, 2017.
- [5] Hashem I.A.T., Yaqoob I., Anuar N.B., Mokhtar S., Gani A., Khan S.U., The rise of big data on cloud computing: review and open research issues, Inf. Syst., 47, 98–115, 2015.
- [6] Bahga A., Madisetti V.K., Analyzing massive machine maintenance data in a computing cloud, IEEE Trans. Parallel. Distrib. Syst., 23, 10, 1831–43, 2012.
- [7] Chen Y., Integrated and intelligent manufacturing: perspectives and enablers, Engineering, 3, 588–595, 2017.
- [8] Baptista M., Sankararaman S., de Medeiros I.P., Nascimento C. Jr., Prendinger H., Henriquesa E.M.P., Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling, Computers & Industrial Engineering, 115, 41–53, 2018.
- [9] Lee J., Jin C., Liu Z., Predictive big data analytics and cyber physical systems for TES systems, Advances in through-life engineering services, Cham: Springer pp. 97–112, 2017.
- [10] Lee J., Jin C., Bagheri B., Cyber physical systems for predictive production systems, Production Engineering, 11, 2, 155–165, 2017.
- [11] Selcuk S., Predictive maintenance, its implementation and latest trends, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231, 9, 1670–1679, 2017.
- [12] Susto G.A., Schirru A., Pampuri S., McLoone S., Beghi A., Machine learning for predictive maintenance: a multiple classifier approach, IEEE Transactions on Industrial Informatics, 11, 3, 812–820, 2015.
- [13] Hashemian H.M., Bean W.C., State-of-the-art predictive maintenance techniques, IEEE Transactions on Instrumentation and Measurement, 60, 10, 3480– 3492, 2011.
- [14] Okoh C., Roy R., Mehnen J., Predictive Maintenance Modelling for Through-Life Engineering Services, The 5th International Conference on Through-life Engineering Services, Procedia CIRP, 59, 196 – 201, 2017.
- [15] Van Horenbeek A., Pintelon L., A dynamic predictive maintenance policy for complex multicomponent systems, Reliab Eng Syst Saf, 120, 39– 50, 2013.
- [16] Razaa A., Ulansky V., Modelling of predictive maintenance for a periodically inspected system, The 5th International Conference on Through-life Engineering Services (2016), Procedia CIRP, 59, 95–101, 2017.
- [17] Efthymiou K., Papakostas N., Chryssolouris G., Mourtzis D., On a predictive maintenance platform for production systems, 45th CIRP Conference on Manufacturing Systems, Procedia CIRP, 3, 221– 226, 2012.
- [18] Kłos S., Patalas-Maliszewska J., The use of the simulation method in analysing the performance of a predictive maintenance system, Distributed Computing and Artificial Intelligence, Springer Nature Switzerland, Advances in Intelligent Systems and Computing, 801, 42–49, 2019.
- [19] Mori M., Fujishima M., Remote Monitoring and Maintenance System for CNC Machine Tools, Procedia CIRP, 12, 7–12, 2013.
- [20] Dong L., Mingyue R., Guoying M., Application of Internet of Things Technology on Predictive Maintenance System of Coal Equipment, 13th Global Congress on Manufacturing and Management, GCMM, Procedia Engineering, 174, 885–889, 2017.
- [21] Ni J., Jin X., Decision support systems for effective maintenance operations, CIRP Annals – Manufacturing Technology, 61, 411–414, 2012.
- [22] SECO/WARWICK S.A., Technical documentation.
- [23] Manual of the gas dosing valve with separate shutoff valve: EVN 116.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24aada71-ed7e-40ec-b050-644de407637e