PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of a two-dimensional photonic crystal with line defect for a laser gas sensor application

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present the results of a numerical analysis of a two-dimensional photonic crystal with line defect fora laser gas sensor working in a slow light regime. The geometrical parameters of photonic crystals with three different line defects were numerically analyzed: a missing row of holes, a row of holes with changed diameter and air channel. Antireflection sections were also analyzed. The simulations were carried out by MEEP and MPB programs, with the aim to get the values of a group refractive index, transmission and a light-gas overlap as high as possible. The effective refractive index method was used to reduce the simulation time and required computing power. We also described numerical simulation details such as required conditions to work in the slow light regime and the analyzed parameters values’ dependency of the simulation resolution that may influence the accuracy of the results.
Rocznik
Strony
80--88
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, 27 Wybrzeże Wyspiańskiego St., Wrocław 50-370, Poland
autor
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, 27 Wybrzeże Wyspiańskiego St., Wrocław 50-370, Poland
Bibliografia
  • [1] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, A survey on gas sensing technology, Sensors 12 (7) (2012) 9635-9665, http://dx.doi.org/10.3390/s120709635.
  • [2] B. Troia, A. Paolicelli, F. De Leonardis, V. M. N. Passaro, in: V. M. N. Passaro (Ed.), Photonic Crystals for Optical Sensing: A Review, 2013, http://dx.doi.org/10.5772/53897, ISBN 978-953-51-0954-9.
  • [3] A. Lambrecht, S. Hartwig, S. L. Schweizer, R. B. Wehrspohn, Miniature infrared gas sensors using photonic crystals, Proc. SPIE 6480, Photonic Crystal Materials and Devices VI (2007), http://dx.doi.org/10.1117/12.700792.
  • [4] J. Khurgin, R. Tucker, Slow Light Science and Applications, CRC Press, Florida, 2009.
  • [5] A. Figotin, I. Vitebsky, Slow light in photonic crystals, Waves Random Complex Media 16 (3) (2006) 293-382, http://dx.doi.org/10.1080/17455030600836507.
  • [6] S. Chakravarty, W. Lai, Y. Zou, C. Lin, X. Wang, R. T. Chen, Silicon nanomembrane based photonic crystal nanostructures for chip-integrated open sensor systems, Proc. SPIE 8198, International Conference on Optical Instruments and Technology: Optoelectronic Devices and Integration (2011), http://dx.doi.org/10.1117/12.910878.
  • [7] A. Zakrzewski, and S. Patela, “Investigation of the laser acetylene sensor based on two-dimensional photonic crystal”, (in preparation).
  • [8] HITRAN2008. https://www.cfa.harvard.edu/hitran/.
  • [9] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Commun. 181 (3) (2010) 687-702, http://dx.doi.org/10.1016/j.cpc.2009.11.008.
  • [10] J. Joannopoulos, S. G. Johnson, Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis”, Opt. Express 8 (3) (2001) 173-190, http://dx.doi.org/10.1364/OE.8.000173.
  • [11] C. G. Bostan, R. M. de Ridder, V. J. Gadgil, H. Kelderman, L. Kuipers, A. Driessen, Design and fabrication of line-defect waveguides in hexagon-type SOI photonic crystal slabs, Proc. SPIE 5450, Photonic Crystal Materials and Nanostructures (2004), http://dx.doi.org/10.1117/12.545694.
  • [12] H. Y. Ryu, J. K. Hwang, Y. H. Lee, Conditions of single guided mode in two-dimensional triangular photonic crystal slab waveguides”, J. Appl. Phys. 88 (9) (2000) 4941-4946, http://dx.doi.org/10.1063/1.1314300.
  • [13] H. H. Li, Refractive index of silicon and germanium and its wavelength and temperature derivatives”, J. Phys. Chem. Ref. Data 9 (1980) 561, http://dx.doi. org/10.1063/1.555624.
  • [14] L. Gao, F. Lemarchand, M. Lequime, Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering, Opt. Express 20 (14) (2012) 15734-15751, http://dx.doi.org/10.1364/OE.20.015734.
  • [15] S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, Linear waveguides in photonic-crystal slabs”, Phys. Rev. B 62 (12) (2000) 8212-8222, http://dx.doi.org/10.1103/PhysRevB.62.8212.
  • [16] J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (2) (1994) 185-200, http://dx.doi.org/10.1006/jcph.1994.1159.
  • [17] P. Pottier, M. Gnan, R. De La Rue, Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers”, Opt. Express 15 (11) (2007) 6569-6575, http://dx.doi.org/10.1364/OE.15.006569.
  • [18] K. Dossou, L. C. Botten, C. M. de Sterke, R. C. McPhedran, A. A. Asatryan, S. Chen, J. Brnovic, Efficient couplers for photonic crystal waveguides, Opt. Commun. 265 (1) (2006) 207-219, http://dx.doi.org/10.1016/j.optcom.2006.02.052.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24a7cbc5-6777-4e72-a69a-032bf1bbe573
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.