PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The removal investigation of nonylphenol etoxilat surfactants in activated sludge systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most significant source of environmental pollution derived from perilous wastes is the circumstantial and intentional emancipation of specific industrial wastes including resistant and/or toxic pollutants to natural environments. Although, biological treatment methods have been commonly found as most effective alternatives in the removal of persistent compounds in industrial wastewaters, they require some increase for obtaining acceptable removal efficiencies, due to the presence of refractory or toxic compounds in the wastewaters. In this study, the use of surfactant of nonylphenol ethoxylates (NPE) in the removal of persistent organic pollutants by biological treatment processes was investigated as an enhancement technique. The application of surfactants can enhance soil and groundwater remediation by increasing contaminant locomotion and solubility to ameliorate the performance of practical conventional remediation technology and by barricading the departure of contaminants to speed the rate of biodegradation of contaminants in environment. The proven effectiveness of surfactants in soil and groundwater remediation has been considered reasonable to expect that surfactants can also enhance the removal of persistent organic pollutants in wastewaters. Different concentrations of nonylphenol ethoxylates (NPE) (1000, 1500, 2000 ppm) were tested to optimize biosurfactant-enhanced degradation of persistent pollutants in wastewaters. The results of this study demonstrate that the biodegradation of persistent organic pollutants in wastewaters is elevated by the use of biosurfactants. The principal mechanism that raises the biodegradation is the augment solvability of poorly soluble compounds in the wastewater. According to the results of this study, it can be anticipated that biosurfactant-enhanced degradation would result in faster and more complete degradation.
Rocznik
Strony
1--5
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
autor
  • Departmen of Chemical Industries, Valiasr Technical College of Tehran, Sepah Str., Tehran, Iran
  • Technical Faculty, University of Tehran, Enghelab Ave., Tehran, Iran
Bibliografia
  • 1. American Public Health Association (APHA), 1998. Standard methods for the examination of water and wastewater, 20th ed.
  • 2. Stephanou E. and Giger W. 1982. Persistent organic chemicals in sewage effluents. 2. Quantitative determinations of nonylphenols and nonylphenol ethoxylates by glass capillary gas chromatographs. Environ. Sci. Technol. 76,
  • 3. Sturm R.N. 1973. Biodegradability of nonionic surfactants: Screening test for predicting rate and ultimate biodegradation. J. Amer. Oil. Chem. SOC. 50, 159-167.
  • 4. Yoshimura K. 1986. Biodegradation and fish toxicity of nonionic surfactants. J. Amer. Oil Chem. SOC. 63, 1590-1596.
  • 5. Ahel M., Giger W., Koch M. 1994. Behaviour of Alkylphenol Polyethoxylate Surfactants in the Aquatic Environment – I. Occurrence and Transformation in Sewage Treatment. Water Res., 28, 5, 1131-1142.
  • 6. Alkylphenols & Ethoxylates Research Council 2006. Alkylphenols and Alkylphenol Ethoxylate Product Uses, Washington, DC.
  • 7. Clara M., Kreuzinger N., Strenn B., Gans O., Kroiss H. 2005. The Solids Retention Time – a Suitable Design Parameter to Evaluate the Capacity of Wastewater Treatment Plants to Remove Micropollutants. Water Res., 39, 97-106.
  • 8. DiCorcia A., Samperi R., Marcomini A. 2000. Occurrence and Abundance of Dicarboxylated Metabolites of Nonylphenol Polyethoxylate Surfactants in Treated Sewages. Environ. Sci. Technol., 34, 3914-3919.
  • 9. Drewes J.E., Hemming J., Ladenburger S.J., Schauer J., Sonzogni W. 2004. An Assessment of Endocrine Disrupting Activity Changes in Water Reclamation Systems Through the Use of Bioassays and Chemical Measurements. Proceedings of the 77th Annual WEFTEC Conference, New Orleans, LA, 1, 77-88.
  • 10. Fauser P., Vikelsoe J., Sorenson P.B., Carlsen L. 2003. Phthalates, Nonylphenols and LAS in an Alternately Operated Wastewater Treatment Plant – Fate Modeling Based on Measured Concentrations in Wastewater and Sludge. Water Res., 37, 1288-1295.
  • 11. Fujita M., Ike M., Mori K., Kaku H., Sakaguchi Y., Asano M., Maki H., Hishihara T. 2000. Behaviour of Nonylphenol Ethoxylates in Sewage Treatment Plants in Japan Biotransformation and Ecotoxicity. Water Sci. & Technol., 42, 7-8, 23-30.
  • 12. Johnson A.C., Aerni H.-R., Gerritsen A., Gibert M., Giger W., Hylland K., Jurgens M. Nakarni, T., Pickering A., Suter M. J.-F., Svenson A., Wettstein F.E. 2005. Comparing Steroid Estrogen and Nonylphenol Content Across a Range of European Sewage Plants with Different Treatment and Management Practices. Water Res., 39, 47-58.
  • 13. Klecka G., Zabik J., Woodburn K., Naylor C., Staples C., Huntsmann B. 2006. Exposur Analysis of Alkylphenol, Alkylphenol Ethoxylates, and their Metabolites in Surface Water Systems within the United States: Comparison to US EPA Water Quality Criteria. Final Report for Alkylphenols and Ethoxylates Research Council (APERC); The Dow Chemical Company, Midland, MI.
  • 14. Lee H-B., Peart T.E. 1998. Occurrence and Elimination of Nonylphenol Ethoxylates and Metabolites in Municipal Wastewater and Effluents. Water Qual. Res. J. Canada, 33 (3), 389-402.
  • 15. Nasu M., Goto M., Kato H., Oshima Y., Tanaka H. 2001. Study on Endocrine Disrupting Chemicals in Wastewater Treatment Plants. Water Sci. & Technol., 43 (2), 101-108.
  • 16. 16. Naylor C.G. 1992. Environmental Fate of Alkylphenol Ethoxylates. Soap/Cosmetics/Chemical Specialties, 68, 27-32.
  • 17. Shao B., Hu J., Yang M. 2003. Nonylphenol Ethoxylates and Their Biodegradation Intermediates in Water and Sludge of a Sewage Treatment Plant. Bull. Environ. Contam. Toxicol., 70, 527-532.
  • 18. Staples C., Mihaich E., Carbone J., Woodburn K., Klecka G. 2004. A Weight of Evidence Analysis of the Chronic Ecotoxicity of Nonylphenol Ethoxylates, Nonylphenol Ether Carboxylates, and Nonylphenol. Human Ecol. Risk Assess., 10, 999-1017.
  • 19. U.S. Environmental Protection Agency 2005. Aquatic Life Ambient Water Quality Criteria – Nonylphenol. U.S. Environmental Protection Agency Report 822-R-05-005, Washington, DC.
  • 20. Zahn R., Wellens H. OECD Guideline for Testing of Chemicals. Adopted by the Council on 17th July 1992.
  • 21. Cserhati T., Forgaces E., Oros G. 2002. Biological activity and environmental impact of anionic surfactants. Environ. Int., 28, 337-348.
  • 22. Fauser P., Vikelsoe J., Sorensen P.B., Carlsen L. 2003. Phathalates, nonylphenols and LAS in an alternately operated wastewater treatment plant – fate modeling based on measured concentrations in wastewater and sludge. Water Research, 37, 1288-1295.
  • 23. Maguire R.J. 1999. Review of the persistence of nonylphenol and nonylphenol ethoxylates in aquatic environments. Wat. Qual. Res. J. Can., 34(1), 37-78.
  • 24. Bizukojc E.L., Bizukojc M. 2006. Effect of selected anionic surfactants on activated sludge flocs. Enzyme and Microbial Technology, 39, 660-668.
  • 25. Yang K., Zhu L., Xing B. 2007. Sorption of sodium dodecylbenzene sulfonate by montmorillonite. Environmental Pollution, 145, 571-576.
  • 26. Onder E., Koparal A.S., Ogutveren U.B. 2007. An alternative method for the removal of surfactants from water: electrochemical coagulation. Separation and Purification Technology, 52, 527-532.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24a30f94-427b-4cbb-8435-52bed033be91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.