PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Analysis of Total Water Storage Changes Obtained from GRACE FO Observations over the Venezia Islands Area Supported with Additional Data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Venezia Islands are a very special area from the hydrological point of view due to its water mass changes. Regular floods results in the need for the regular monitoring of water mass changes. For this purpose, a Gravity Recovery and Climate Experiment mission (GRACE) can be used as a source of data. The aim of the paper is to compare the latest results of the new GRACE FO observations. The comparisons were carried out all over Venezia Island using the L3 level, RL06 release data obtained with spherical harmonics degree and order extension of up to 120, by the three most important computational centres: JPL, GFZ, CSR. Results are compared to an average month values of precipitation and evapotranspiration and tide gauge data in the nearby area. Based on the research, no dependence between TWS and evapotranspiration and evapotranspiration change were found.
Rocznik
Strony
17--31
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Department of Geodesy and Civil Engineering, Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Geodesy and Civil Engineering, Olsztyn, Poland
Bibliografia
  • [1] Chen J., Famiglietti J.S., Scanlon B.R., Rodell M.: Groundwater storage changes: present status from GRACE observations. Surveys in Geophysics, vol. 37(2), 2016, pp. 397–417.
  • [2] Biancamaria S., Mballo M., Le Moigne P., Pérez S.J.M., Espitalier‑Noël G., Grusson Y., Cakir R., Häfliger V., Barathieu F., Trasmonte M., Boone A., Martin E., Sauvage S.: Total water storage variability from GRACE mission and hydrological models for a 50,000 km2 temperate watershed: the Garonne River basin (France). Journal of Hydrology: Regional Studies, vol. 24, 2019, 100609.
  • [3] Wouters B., Bonin J.A., Chambers D.P., Riva R.E.M., Sasgen I., Wahr J.: GRACE, time‑varying gravity, Earth system dynamics and climate change. Reports on Progress in Physics, vol. 77, no. 11, 2014, 116801.
  • [4] Niu G.Y., Yang Z.L.: Assessing a land surface model’s improvements with GRACE estimates. Geophysical Research Letters, vol. 3, 2006, L07401.
  • [5] Zaitchik B.F., Rodell M., Reichle R.H.: Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River basin. Journal of Hydrometeorology, vol. 9(3), 2008, pp. 535–548.
  • [6] Gao Y., Tang Q., Ferguson C.R., Wood E.F., Lettenmaier D.P.: Estimating the water budget of major US river basins via remote sensing. International Journal of Remote Sensing, vol. 31, no. 14, 2010, pp. 3955–3978.
  • [7] Śliwińska J., Birylo M., Rzpecka Z., Nastula J.: Analysis of groundwater and total water storage changes in Poland using GRACE observations, in‑situ data, and various assimilation and climate models. Remote Sensing, vol. 11, 2019, 2949.
  • [8] Rodell M., Famiglietti J.S., Wiese D.N., Reager J.T., Beaudoing H.K., Landerer F.W., Lo M.H.: Emerging trends in global freshwater availability. Nature, vol. 557, 2008, pp. 651–659.
  • [9] Saha G.C.: Climate Change Induced Precipitation Effects on Water Resources in the Peace Region of British Columbia, Canada. Climate, vol. 3(2), 2015, pp. 264–282.
  • [10] GES DISC: Giovanni Measurement Definitions: Precipitation. https://disc.gsfc.nasa.gov/information/glossary?keywords=giovanni%20measurements&title=Giovanni%20Measurement%20Definitions:%20Precipitation [access: 10.02.2020].
  • [11] Moorhead J.E., Marek G.W., Gowda P.H., Lin X., Colaizzi P.D., Evet S.R., Kutikoff S.: Evaluation of Evapotranspiration from Eddy Covariance Using Large Weighing Lysimeters. Agronomy, vol. 9, no. 2, 2019, 99.
  • [12] LDAS – Land Data Assimilation System. http://ldas.gsfc.nasa.gov/faq/#NL-DAS_evap [10.02.2020].
  • [13] Sakumura C., Bettadpur S., Bruinsma S.: Ensemble prediction and intercomparison analysis of GRACE time‑variable gravity field models. Geophysical Research Letters, vol. 41(5), 2014, pp. 1389–1397.
  • [14] Wargan K., Labow G., Frith S., Pawson S., Livesey N., Partyka G.: Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis. Journal of Climate, vol. 30(8), 2017, pp. 2961–2988.
  • [15] Rienecker M.M., Suarez M.J., Gelaro R., Todling R., Bacmeister J., Liu E., Bosilovich M.G., Schubert S.D., Takacs L., Kim G.K., Bloom S., Chen J., Collins D., Conaty A., da Silva A., Gu W., Joiner J., Koster R.D., Lucchesi R., Molod A., Owens T., Pawson S., Pegion P., Redder C.R., Reichle R., Robertson F.R., Ruddick A.G., Sienkiewicz M., Woollen J.: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, vol. 24(14), 2011, pp. 3624–3648.
  • [16] PSMSL – Permanent Service for Mean Sea Level. https://www.psmsl.org/ [access: 18.02.2020].
  • [17] Molinaroli M., Guerzoni S., Sarretta A., Cucco A., Umgiesser G.: Links between hydrology and sedimentology in the Lagoon of Venice, Italy. Journal of Marine Systems, vol. 68(3–4), 2007, pp. 303–317.
  • [18] Pirazzoli P.A.: Possible defences against a sea level rise in the Venice area, Italy. Journal of Coastal Research, vol. 7, no. 1, 1991, pp. 231–248.
  • [19] Canestrelli P., Mandich M., Pirazzoli P.A., Tomasin A.: Wind, depression and seiches: tidal perturbations in Venice (1951–2000). Technical Report, Comune di Venezia, Centro Previsioni e Segnalazioni Maree, Venice, Italy, 2001.
  • [20] Wahr J., Molenaar M., Bryan F.: Time variability of the Earth gravity firld: hydrological aand oceanic effects and their possible detection using GRACE. Journal of Geophysical Research – Solid Earth, vol. 103(B12), 1998, pp. 30205–30229.
  • [21] Hassan A., Jin S.: Water cycle and climate signals in Africa observed by satellite gravimetry. IOP Conference Series: Earth and Environmental Science, vol. 17, 2014, 012149.
  • [22] Jekeli C.: Alternative Methods to Smooth the Earth’s Gravity Field. Geodetic and Geoinformation Science Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio 1981.
  • [23] Swenson S., Wahr J.: Methods for inferring regional surface mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. Journal of Geophysical Research – Solid Earth, vol. 107(B9), 2002, pp. ETG 3-1–ETG 3-13.
  • [24] Rowlands D., Luthcke S., McCarthy J., Klosko S., Chinn D., Lemoine F., Boy J.-P., Sabaka T.: Global mass flux solutions from GRACE: A comparison of parameter estimation strategies – Mass concentrations versus stokes coefficients. Journal of Geophysical Research – Solid Earth, vol. 115(B1), 2010, B01403.
  • [25] GRACE-FO – NASA. https://gracefo.jpl.nasa.gov/ [access: 3.02.2020].
  • [26] JPL GRACE Tellus – NASA. https://grace.jpl.nasa.gov/ [access: 8.02.2020].
  • [27] GRACE-FO Geopotential GSM Coefficients GFZ RL06. http://dataservices.gfz-potsdam.de/gracefo/showshort.php?id=escidoc:4289898 [access: 8.02.2020].
  • [28] PO.DAAC – NASA. https://podaac.jpl.nasa.gov/ [access: 8.02.2020].
  • [29] Swenson S., Wahr J.: Post‑processing removal of correlated errors in GRACE data. Geophysical Research Letters, vol. 33(8), 2006, L08402.
  • [30] Longuevergne L., Scanlon B.R., Wilson C.R.: GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resources Research, vol. 46(11), 2010, W11517.
  • [31] Long D., Pan Y., Zhou J., Chen Y., Hou X., Hong Y., Scanlon B.R., Longuevergne L.: Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sensing of Environment, vol. 192, 2017, pp. 198–216.
  • [32] The GRACE Plotter. http://thegraceplotter.com/ [access: 21.02.2020].
  • [33] Scanlon B.R., Zhang Z., Save H., Wiese D.N., Landerer F.W., Long D., Longuevergne L., Chen J.: Global evaluation of new GRACE mascon products for hydrologic applications. Water Resourches Research, vol. 52(12), 2016, pp. 9412–9429.
  • [34] Watkins M.M., Wiese D.N., Yuan D.N., Boening C., Landerer F.W.: Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. JGR Solid Earth, vol. 120(4), 2015, pp. 2648–2671.
  • [35] NASA Giovanni. https://giovanni.gsfc.nasa.gov/giovanni/ [access: 31.01.2020].
  • [36] Trenberth K.E., Fasullo J.T.: North American water and energy cycles. Geophysical Research Letters, vol. 40, 2016, pp. 365–369.
  • [37] Oki T., Kanae S.: Global hydrological cycles and world water resources. Science, vol. 313, 2006, pp. 1068–1072.
  • [38] Parish E.S., Kodra E., Steinhaeuser K., Ganguly A.R.: Estimating future global per capita water availability based on changes in climate and population. Computers & Geosciences, vol. 42, 2012, pp. 79–86.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-249fc1e4-401a-483a-aa09-0987c346319b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.