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1. Introduction 
 

Wave-like distributions have been applied to many 
engineering fields, e.g., Davidson and Frank [4], 
Idriss and Boulanger [10], King and Tucker [11], 
Lermo and Chávez-García [12].  
Empirical evidences have shown that a 
repair/maintenance improves the system in certain 
degree [5]. Therefore the hazard function of a 
repairable system may reveal a wave-like pattern.  
In reliability engineering it got used to monotonic 
hazards [13]. Guo et al. [8] shows the evidence that 
maximum likelihood modeling of Kiln system 
functioning/failure(PM) data supports the wave-like 
distribution pattern believe. 
Bathtub hazard function has obtained more and 
more attention in accelerate life testing, repairable 
system modeling, Love and Guo [14]. Table 1 lists 
a few of bathtub hazard families Since the first 
proposed by Smith and Bain [15] in 1975. Logically, 
there are two forces acting on a repairable system, 
wearing out/damaging and recovering 
simultaneously. The former force causes system 
increasing in hazard, while the later force causes the 
system decreasing in hazard. Therefore the balance 
between the two forces let the system hazard 
possess a pattern of decreasing at the beginning, 

steady in the middle, and increasing at the end, i.e., 
bathtub pattern. Nevertheless the bathtub curve 
should not be expected smoothed locally. In other 
words, the hazard curve of a repairable should be 
wave-like bathtub shaped. 
 
Table 1. Existing bathtub hazards 
 

No. ( )h t  Authors 

1 
t

t

β + δ
+ γ

 
[9] 

2 1

exp
t t

β− β  β    
       α α α     

 
 [15] 

3 2t tα + β + γ   [1] 

4 ( )2exp t tα + β + γ  
 [1] 

5 
1t

t
θ−β + θ

+ γ
 

 [7] 

6 ( )( ) 1
1 t t

θ− θθ + − θ + θ + θ  
 [7] 

7 ( )( ) ( )1
1 t t

θ− θθ + − θ π + θ + θ π  
 [7] 

 
Estimating the parameters of any particular 
statistical model is most often carried out via 
maximum likelihood estimation (MLE). Searching 
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for the MLE is a basic and well understood 
procedure in reliability modeling. Any candidate of 
MLE’s in general, is a local solution. 
Mathematically, any local solution will be an MLE, 
which maintains the elementary property of the 
MLE. Whether an MLE is a feasible solution is an 
engineering judgment. Therefore it is logical and 
preferred to search globally for candidate solutions 
to identify the best solution from an engineering 
(maintenance) perspective. The most popular global 
optimization algorithm is the genetic algorithm 
(GA). Recently, Cui et al. [2], [3] developed a new 
global searching scheme, called λ-algorithm, which 
is a simpler than that of GA with an equivalent 
searching efficiency. 
Therefore, the structure of the remaining of the 
paper is stated as following: Section 2 to Section 5 
will serve the developments of Type I to Type IV 
wave-like bathtub class respectively. Section 6 
concludes this paper.  
 

2. Type I wave-like bathtub 
 

Type I wave-like bathtub hazard is proposed by 
Guo et al. [6] recently. 
Definition 2.1.  Denote the lifetime of a system by 
X taking values from[ )0,+∞ . The density function 

is     
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Then X is called a lifetime with type I wave-like 
hazard function:    
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Figure 1 shows that the Type I hazard demonstrates 
a wave-like bathtub pattern. 
 

 
 

Figure 1. Hazard plot ( ) ,  0.01,  0h t α γ= =  

 
 

Theorem 2.2. Let    
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Then the log-likelihood of Type I wave-like hazard 
can be expressed by    
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where ( ){ }, , 1,2, ,i iK x i Nϑ= = L is a sample with 

failure-censoring indicators,   
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Furthermore, the first-order partial derivatives with 
respect to the two parameters are   
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Finally, the second-order partial derivatives are  
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with 
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3. Type II wave-like bathtub 
 

Type II wave-like bathtub hazard is also proposed 
by Guo et al. [6] recently. 
Definition 3.1. Denote the lifetime of a system by 
X taking values from[ )0,+∞ . The density function 

is 
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ThenX is called a lifetime with type II wave-like 
hazard function 
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Figure 2 shows that the Type II hazard 
demonstrates a wave-like bathtub pattern.  
 

 
 

Figure 2. Hazard plot ( ) ,  0.01,  0.1h t α γ= =  

 
Theorem 3.2. Let   
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Then the log-likelihood of Type II wave-like hazard 
can be expressed by    
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Furthermore, the first-order partial derivatives with 
respect to the two parameters are indicators   
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Finally, the second-order partial derivatives are    
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4. Type III wave-like bathtub 
 

Type III wave-like bathtub hazard is a convex 
mixture of power law and Cauchy density with 
cosine term to catch up wave-like pattern.  
Definition 4.1. Denote the lifetime of a system by 
X taking values from[ )0,+∞ . The density function 

is 

( ) ( ) ( )
( )

( ) ( )
( )

2

2
0

cos
1

2 1

cos
     exp 1

2 1

x

x
f x x

x

s
s ds

s

γ

γ

α
β β

α
β β

 
 = + − ×
 + 

  
  − + −

  +  
∫

 (23) 

ThenX is called a lifetime with type III wave-like 
hazard function are   
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Figure 3 shows that the Type III hazard 
demonstrates a wave-like bathtub pattern. 
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Figure 3. The plot of Type III wave-like bathtub 
hazard function (( ) ( ), , 0.15 ,0.35,0.08α β γ π= ) 

 
Remark 4.1. In equation (24), the term xγ is 
monotone-increasing as long as 0γ > , which 
catches up the wear-out/damage from the system 
operation, the term ( )21 1 x+ catches up the system 

repair/PM improvement to the system (average 
trend curve), and the term ( )cos xα may reveal the 

repair/damage related fluctuations about the 
average trend in hazard. If 0α = , the hazard 
becomes power lawxγβ . 
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Then the log-likelihood of Type III wave-like 
hazard can be expressed by 
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Furthermore, the first-order partial derivatives with 
respect to the two parameters are 
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Finally, the second-order partial derivatives are 
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5. Type IV wave-like bathtub 
 

Type IV wave-like bathtub hazard is a convex 
mixture of power law and cosine-Cauchy density 

with cosine term to catch up wave-like pattern, 
which is an improved version from the two-
parameter bathtub model [6]. 
Definition 5.1. Denote the lifetime of a system by 
X taking values from[ )0,+∞ . The density function 

is 
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ThenX is called a lifetime with type IV wave-like 
hazard function   
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Remark 5.2. Intuitively, Type IV is a two-parameter 
wave-like bathtub family. Term xγ is an increasing 
function as long as γ > 0; while term ( ) 1

x
γγ −+  is a 

decreasing function as long as γ ∈ (0,1). The third 
term ( ) ( )( )2cos 2 1x xα +  is a decreasing function 
which fluctuates around the decreasing curve 

( ) ( )( )2cos 2 1x xα +  as x  increases. 
Figure 4 shows that the Type III hazard 
demonstrates a wave-like bathtub pattern.  
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Figure 4. The plot of Type IV wave-like bathtub 
hazard function (( ) ( ), 0.5 ,0.25α γ π= ) 

 
Theorem 5.3. Let   
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 
 = = + + − + +
 + 

 (35) 

Then the log-likelihood of Type IV wave-like 
hazard can be expressed by  
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   ( )
0

1 1

( , | ) 1
i

i

n n x

i x s
i i

l K X Y dsα γ ϑ
= =

= − +∑ ∑∫  (36) 

where ( ){ }, , 1,2, ,i iK x i Nϑ= = L is a sample with 

failure-censoring indicators   

   


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ϑ
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i

i
i x

x
=  (37) 

Furthermore, the first-order partial derivatives with 
respect to the two parameters are 
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where  
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(39) 

Finally, the second-order partial derivatives are 
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where   
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with 

( )( )

( )( )

( )( )

2

1 2

2

1

2

3

2

3

1

(1 )(2( ) (ln( ))

((ln( ))( ) ( 1)( ) ))

(1 )( 1)(

           

(ln( ))( )

( 2)( ) )

( 1)( ) (ln( ))( )

u

u

u

Z u u

u u u

Z u u

u

Z uu u

g

g g

g

g

g

-

-

g

-

-

-

- -

- + + + ´

+ + + - +

- - + +

+

g = g g g

g g

- +

- - + - +

g g

g = g g g g

g g

g = +g g g g

 (42) 

 
6. Conclusion 
 

The idea for introducing wave-like lifetime 
distribution was already causing some concern from 
certain corner of the reliability researchers who 
committed their whole life for using smoothing 
types of lifetime distributions. As to the wave-like 
bathtub hazards, it is seems offensive for those 
traditional reliability researchers. To us the authors 
of this paper, it is merely a collision between an 
ideology of mathematical convenience and the 
existence facing the diversifying real world. As a 
matter of fact smoothing bathtub function appears 
in very rare circumstances, for example, the 
hydrogen turbine generation unit, where once the 
unit passed its early warming stage, its operational 
speed is constant. However, in public 
transportation, in the warfare related tanks, cannons 
and even the ships the load there are constantly 
altered and the hazards too. 
In our paper, we offered the four classes of wave-
like bathtub hazards and accordingly the MLE 
information. It is obvious that the integration 
problem will cost computation time heavily in 
searching MLE. To get an effective remedy will be 
our aim in the next research stage.   
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